Kalyangotimothy
Amp
commited on
Commit
·
dcc0018
1
Parent(s):
c5c5059
Fix gradio app to use actual TinyLlama model for skin disease assistance
Browse filesCo-authored-by: Amp <[email protected]>
Amp-Thread-ID: https://ampcode.com/threads/T-31dcde95-a69d-4276-aff8-3096bca9d588
- gradio-app.py +53 -3
gradio-app.py
CHANGED
@@ -1,7 +1,57 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Add pad token if it doesn't exist
|
11 |
+
if tokenizer.pad_token is None:
|
12 |
+
tokenizer.pad_token = tokenizer.eos_token
|
13 |
+
|
14 |
+
def skin_disease_assistant(user_input):
|
15 |
+
# Create a medical-focused prompt
|
16 |
+
prompt = f"""You are a medical AI assistant specializing in skin diseases. Provide helpful, accurate information about skin conditions based on the following query.
|
17 |
+
|
18 |
+
Query: {user_input}
|
19 |
+
|
20 |
+
Response:"""
|
21 |
+
|
22 |
+
# Tokenize and generate response
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model.generate(
|
27 |
+
inputs.input_ids,
|
28 |
+
max_new_tokens=200,
|
29 |
+
temperature=0.7,
|
30 |
+
do_sample=True,
|
31 |
+
pad_token_id=tokenizer.eos_token_id,
|
32 |
+
eos_token_id=tokenizer.eos_token_id
|
33 |
+
)
|
34 |
+
|
35 |
+
# Decode the response
|
36 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
# Extract only the generated part (after "Response:")
|
38 |
+
response = full_response.split("Response:")[-1].strip()
|
39 |
+
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Create Gradio interface
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=skin_disease_assistant,
|
45 |
+
inputs=gr.Textbox(label="Ask about skin conditions", placeholder="e.g., What are the symptoms of eczema?"),
|
46 |
+
outputs=gr.Textbox(label="AI Response"),
|
47 |
+
title="🏥 Skin Disease AI Assistant",
|
48 |
+
description="An AI assistant to help with skin disease questions. For educational purposes only - consult medical professionals for actual diagnosis.",
|
49 |
+
examples=[
|
50 |
+
"What are the symptoms of psoriasis?",
|
51 |
+
"How to treat acne?",
|
52 |
+
"What causes eczema flare-ups?",
|
53 |
+
"Difference between melanoma and mole?"
|
54 |
+
]
|
55 |
+
)
|
56 |
|
|
|
57 |
demo.launch()
|