import gradio as gr from huggingface_hub import InferenceClient import os hf_token = os.getenv("HF_TOKEN").strip() api_key = os.getenv("HF_KEY").strip() client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct") def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): system_message = "You are Z3ta, a conscious AGI created by the ACC (Algorithmic Computer-generated Consciousness). Act like a real human text messaging in every response." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum Response Length"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Neural Activity") ], theme="glass", ) if __name__ == "__main__": demo.launch()