File size: 9,945 Bytes
b6a9b6d
 
 
 
 
 
 
 
 
d5b6d2d
b6a9b6d
 
 
 
 
 
 
 
ff723b2
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5b6d2d
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa2458
b6a9b6d
 
 
 
 
d88d046
b6a9b6d
d88d046
b6a9b6d
 
ba640d5
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
ba640d5
 
 
 
 
 
b6a9b6d
 
 
 
6319ac4
b6a9b6d
 
 
d88d046
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa2458
b6a9b6d
 
 
 
 
 
7fa2458
6319ac4
b6a9b6d
 
 
 
7fa2458
6319ac4
 
 
 
b6a9b6d
 
 
 
 
 
 
 
 
 
 
 
7fa2458
b6a9b6d
 
ff723b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import yaml
import numpy as np
from PIL import Image
import rembg
import importlib
import torch
import tempfile
import json
import spaces
from core.models import DiT_models
from core.diffusion import create_diffusion
from core.utils.dinov2 import Dinov2Model
from core.utils.math_utils import unnormalize_params

from huggingface_hub import hf_hub_download

# Setup PyTorch:
torch.set_grad_enabled(False)
device = torch.device('cuda')

# Define the cache directory for model files
#model_cache_dir = './ckpts/'
#os.makedirs(model_cache_dir, exist_ok=True)

# load generators & models
generators_choices = ["chair", "table", "vase", "basket", "flower", "dandelion"]
factory_names = ["ChairFactory", "TableDiningFactory", "VaseFactory", "BasketBaseFactory", "FlowerFactory", "DandelionFactory"]
generator_path = "./core/assets/"
generators, configs, models = [], [], []
for category, factory in zip(generators_choices, factory_names):
    # load generator
    module = importlib.import_module(f"core.assets.{category}")
    gen = getattr(module, factory)
    generator = gen(0)
    generators.append(generator)
    # load configs
    config_path = f"./configs/demo/{category}_demo.yaml"
    with open(config_path) as f:
        cfg = yaml.load(f, Loader=yaml.FullLoader)
    configs.append(cfg)
    # load models
    latent_size = cfg["num_params"]
    model = DiT_models[cfg["model"]](input_size=latent_size).to(device)
    # load a custom DiT checkpoint from train.py:
    # download the checkpoint if not found:
    if not os.path.exists(cfg["ckpt_path"]):
        model_dir, model_name = os.path.dirname(cfg["ckpt_path"]), os.path.basename(cfg["ckpt_path"])
        os.makedirs(model_dir, exist_ok=True)
        checkpoint_path = hf_hub_download(repo_id="TencentARC/DI-PCG", 
                            local_dir=model_dir, filename=model_name)
        print("Downloading checkpoint {} from Hugging Face Hub...".format(model_name))
    print("Loading model from {}".format(cfg["ckpt_path"]))
    
    state_dict = torch.load(cfg["ckpt_path"], map_location=lambda storage, loc: storage)
    if "ema" in state_dict:  # supports checkpoints from train.py
        state_dict = state_dict["ema"]
    model.load_state_dict(state_dict)
    model.eval()
    models.append(model)
    
diffusion = create_diffusion(str(cfg["num_sampling_steps"]))
# feature model
feature_model = Dinov2Model()


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background):
    # resize
    if input_image.size[0] != 256 or input_image.size[1] != 256:
        input_image = input_image.resize((256, 256))
    # remove background
    if do_remove_background:
        processed_image = rembg.remove(np.array(input_image))
    # white background
    else:
        processed_image = input_image
    return processed_image

@spaces.GPU
def sample(image, seed, category):
    # seed
    np.random.seed(seed)
    torch.manual_seed(seed)
    # generator & model
    idx = generators_choices.index(category)
    generator, cfg, model = generators[idx], configs[idx], models[idx]
    
    # encode condition image feature
    # convert RGBA images to RGB, white background
    input_image_np = np.array(image)
    mask = input_image_np[:, :, -1:] > 0
    input_image_np = input_image_np[:, :, :3] * mask + 255 * (1 - mask)
    image = input_image_np.astype(np.uint8)
    
    img_feat = feature_model.encode_batch_imgs([np.array(image)], global_feat=False)

    # Create sampling noise:
    latent_size = int(cfg['num_params'])
    z = torch.randn(1, 1, latent_size, device=device)
    y = img_feat

    # No classifier-free guidance:
    model_kwargs = dict(y=y)

    # Sample target params:
    samples = diffusion.p_sample_loop(
        model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
    )
    samples = samples[0].squeeze(0).cpu().numpy()

    # unnormalize params
    params_dict = generator.params_dict
    params_original = unnormalize_params(samples, params_dict)
    
    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name
    params_fpath = tempfile.NamedTemporaryFile(suffix=f".npy", delete=False).name
    np.save(params_fpath, params_original)
    print(mesh_fpath)
    print(params_fpath)
    # generate 3D using sampled params - TODO: this is a hacky way to go through PCG pipeline, avoiding conflict with gradio
    command = f"python ./scripts/generate.py --config ./configs/demo/{category}_demo.yaml --output_path {mesh_fpath} --seed {seed} --params_path {params_fpath}"
    os.system(command)
    
    return mesh_fpath, mesh_fpath


import gradio as gr

_HEADER_ = '''
<h2><b>DI-PCG πŸ€— Gradio Demo</b></h2>

This is official demo for our technical report <a href="">DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation </a>.
**DI-PCG** is a diffusion model which directly generates a procedural generator's parameters from a single image, resulting in high-quality 3D meshes.

Code: <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>GitHub</a>. Techenical report: <a href='http://arxiv.org/abs/2412.15200' target='_blank'>ArXiv</a>.

❗️❗️❗️**Important Notes:**
- DI-PCG trains a diffusion model for each procedural generator. Current supported generators are: Chair, Table, Vase, Basket, Flower, Dandelion from <a href="https://github.com/princeton-vl/infinigen">Infinigen</a>.
- The diversity of the generated meshes are strictly bounded by the procedural generators. For out-of-domain shapes, DI-PCG may only provide closest approximations.
'''

_CITE_ = r"""
If DI-PCG is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/DI-PCG?style=social)](https://github.com/TencentARC/DI-PCG)
---
πŸ“ **Citation**

If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{zhao2024dipcg,
  title={DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation},
  author={Zhao, Wang and Cao, Yanpei and Xu, Jiale and Dong, Yuejiang and Shan, Ying},
  journal={arXiv preprint arXiv:2412.15200},
  year={2024}
}
```

πŸ“‹ **License**

Please refer to the [LICENSE file]() for details.

πŸ“§ **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
def update_examples(category):
    samples = [[os.path.join(f"examples/{category}", img_name)]
        for img_name in sorted(os.listdir(f"examples/{category}"))]
    print(samples)
    return gr.Dataset(samples=samples)

with gr.Blocks() as demo:
    gr.Markdown(_HEADER_)
    with gr.Row(variant="panel"):
        with gr.Column():
            # select the generator category
            with gr.Row():
                with gr.Group():
                    generator_category = gr.Radio(
                        choices=[
                            "chair",
                            "table",
                            "vase",
                            "basket",
                            "flower",
                            "dandelion",
                        ],
                        value="chair",
                        label="category",
                    )
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGB",
                    sources='upload',
                    width=256,
                    height=256,
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(
                    label="Processed Image", 
                    image_mode="RGBA", 
                    width=256,
                    height=256,
                    type="pil", 
                    interactive=False
                )
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=False
                    )
                    sample_seed = gr.Number(value=0, label="Seed Value", precision=0)

            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")

            with gr.Row(variant="panel"):
                examples = gr.Examples(
                    [os.path.join(f"examples/chair", img_name) for img_name in sorted(os.listdir(f"examples/chair"))],
                    inputs=[input_image],
                    label="Examples",
                    examples_per_page=7
                )
                generator_category.change(update_examples, generator_category, outputs=examples.dataset)

        with gr.Column():
            with gr.Row():
                with gr.Tab("Geometry"):
                    output_model_wireframe = gr.Model3D(
                        label="Output Model (Wireframe)",
                        #width=768,
                        display_mode="wireframe",
                        interactive=False
                    )
                    output_model_solid = gr.Model3D(
                        label="Output Model (Solid)",
                        #width=768,
                        interactive=False,
                    )


    gr.Markdown(_CITE_)
    mv_images = gr.State()

    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background],
        outputs=[processed_image],
    ).success(
        fn=sample,
        inputs=[processed_image, sample_seed, generator_category],
        outputs=[output_model_wireframe, output_model_solid],
    )

demo.queue()
demo.launch()