Spaces:
Running
on
Zero
Running
on
Zero
| # Merge image encoder and fuse module to create an ID Encoder | |
| # send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding | |
| import torch | |
| import torch.nn as nn | |
| from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection | |
| from transformers.models.clip.configuration_clip import CLIPVisionConfig | |
| from .resampler import FacePerceiverResampler | |
| VISION_CONFIG_DICT = { | |
| "hidden_size": 1024, | |
| "intermediate_size": 4096, | |
| "num_attention_heads": 16, | |
| "num_hidden_layers": 24, | |
| "patch_size": 14, | |
| "projection_dim": 768 | |
| } | |
| class MLP(nn.Module): | |
| def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True): | |
| super().__init__() | |
| if use_residual: | |
| assert in_dim == out_dim | |
| self.layernorm = nn.LayerNorm(in_dim) | |
| self.fc1 = nn.Linear(in_dim, hidden_dim) | |
| self.fc2 = nn.Linear(hidden_dim, out_dim) | |
| self.use_residual = use_residual | |
| self.act_fn = nn.GELU() | |
| def forward(self, x): | |
| residual = x | |
| x = self.layernorm(x) | |
| x = self.fc1(x) | |
| x = self.act_fn(x) | |
| x = self.fc2(x) | |
| if self.use_residual: | |
| x = x + residual | |
| return x | |
| class QFormerPerceiver(nn.Module): | |
| def __init__(self, id_embeddings_dim, cross_attention_dim, num_tokens, embedding_dim=1024, use_residual=True, ratio=4): | |
| super().__init__() | |
| self.num_tokens = num_tokens | |
| self.cross_attention_dim = cross_attention_dim | |
| self.use_residual = use_residual | |
| print(cross_attention_dim*num_tokens) | |
| self.token_proj = nn.Sequential( | |
| nn.Linear(id_embeddings_dim, id_embeddings_dim*ratio), | |
| nn.GELU(), | |
| nn.Linear(id_embeddings_dim*ratio, cross_attention_dim*num_tokens), | |
| ) | |
| self.token_norm = nn.LayerNorm(cross_attention_dim) | |
| self.perceiver_resampler = FacePerceiverResampler( | |
| dim=cross_attention_dim, | |
| depth=4, | |
| dim_head=128, | |
| heads=cross_attention_dim // 128, | |
| embedding_dim=embedding_dim, | |
| output_dim=cross_attention_dim, | |
| ff_mult=4, | |
| ) | |
| def forward(self, x, last_hidden_state): | |
| x = self.token_proj(x) | |
| x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
| x = self.token_norm(x) # cls token | |
| out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens | |
| if self.use_residual: # TODO: if use_residual is not true | |
| out = x + 1.0 * out | |
| return out | |
| class FuseModule(nn.Module): | |
| def __init__(self, embed_dim): | |
| super().__init__() | |
| self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False) | |
| self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True) | |
| self.layer_norm = nn.LayerNorm(embed_dim) | |
| def fuse_fn(self, prompt_embeds, id_embeds): | |
| stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) | |
| stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds | |
| stacked_id_embeds = self.mlp2(stacked_id_embeds) | |
| stacked_id_embeds = self.layer_norm(stacked_id_embeds) | |
| return stacked_id_embeds | |
| def forward( | |
| self, | |
| prompt_embeds, | |
| id_embeds, | |
| class_tokens_mask, | |
| ) -> torch.Tensor: | |
| # id_embeds shape: [b, max_num_inputs, 1, 2048] | |
| id_embeds = id_embeds.to(prompt_embeds.dtype) | |
| num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case | |
| batch_size, max_num_inputs = id_embeds.shape[:2] | |
| # seq_length: 77 | |
| seq_length = prompt_embeds.shape[1] | |
| # flat_id_embeds shape: [b*max_num_inputs, 1, 2048] | |
| flat_id_embeds = id_embeds.view( | |
| -1, id_embeds.shape[-2], id_embeds.shape[-1] | |
| ) | |
| # valid_id_mask [b*max_num_inputs] | |
| valid_id_mask = ( | |
| torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] | |
| < num_inputs[:, None] | |
| ) | |
| valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] | |
| prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) | |
| class_tokens_mask = class_tokens_mask.view(-1) | |
| valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) | |
| # slice out the image token embeddings | |
| image_token_embeds = prompt_embeds[class_tokens_mask] | |
| stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) | |
| assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" | |
| prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) | |
| updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) | |
| return updated_prompt_embeds | |
| class PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken(CLIPVisionModelWithProjection): | |
| def __init__(self, id_embeddings_dim=512): | |
| super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT)) | |
| self.fuse_module = FuseModule(2048) | |
| self.visual_projection_2 = nn.Linear(1024, 1280, bias=False) | |
| cross_attention_dim = 2048 | |
| # projection | |
| self.num_tokens = 2 | |
| self.cross_attention_dim = cross_attention_dim | |
| self.qformer_perceiver = QFormerPerceiver( | |
| id_embeddings_dim, | |
| cross_attention_dim, | |
| self.num_tokens, | |
| ) | |
| def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds): | |
| b, num_inputs, c, h, w = id_pixel_values.shape | |
| id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) | |
| last_hidden_state = self.vision_model(id_pixel_values)[0] | |
| id_embeds = id_embeds.view(b * num_inputs, -1) | |
| id_embeds = self.qformer_perceiver(id_embeds, last_hidden_state) | |
| id_embeds = id_embeds.view(b, num_inputs, self.num_tokens, -1) | |
| updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask) | |
| return updated_prompt_embeds | |
| if __name__ == "__main__": | |
| PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken() |