Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
c2cbf3f
0
Parent(s):
text-classification -v1
Browse files- Makefile +27 -0
- app.py +47 -0
- requirements.txt +3 -0
Makefile
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
install:
|
| 2 |
+
pip install --upgrade pip &&\
|
| 3 |
+
pip install -r requirements.txt
|
| 4 |
+
|
| 5 |
+
test:
|
| 6 |
+
python -m pytest -vvv --cov=hello --cov=greeting \
|
| 7 |
+
--cov=smath --cov=web tests
|
| 8 |
+
python -m pytest --nbval notebook.ipynb #tests our jupyter notebook
|
| 9 |
+
#python -m pytest -v tests/test_web.py #if you just want to test web
|
| 10 |
+
|
| 11 |
+
debug:
|
| 12 |
+
python -m pytest -vv --pdb #Debugger is invoked
|
| 13 |
+
|
| 14 |
+
one-test:
|
| 15 |
+
python -m pytest -vv tests/test_greeting.py::test_my_name4
|
| 16 |
+
|
| 17 |
+
debugthree:
|
| 18 |
+
#not working the way I expect
|
| 19 |
+
python -m pytest -vv --pdb --maxfail=4 # drop to PDB for first three failures
|
| 20 |
+
|
| 21 |
+
format:
|
| 22 |
+
black *.py
|
| 23 |
+
|
| 24 |
+
lint:
|
| 25 |
+
pylint --disable=R,C *.py
|
| 26 |
+
|
| 27 |
+
all: install lint test format
|
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification
|
| 2 |
+
from transformers import AutoTokenizer, AutoConfig
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.special import softmax
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
# Preprocess text (username and link placeholders)
|
| 8 |
+
def preprocess(text):
|
| 9 |
+
new_text = []
|
| 10 |
+
for t in text.split(" "):
|
| 11 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
| 12 |
+
t = 'http' if t.startswith('http') else t
|
| 13 |
+
new_text.append(t)
|
| 14 |
+
return " ".join(new_text)
|
| 15 |
+
|
| 16 |
+
# load model
|
| 17 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 18 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 19 |
+
#model.save_pretrained(MODEL)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 23 |
+
config = AutoConfig.from_pretrained(MODEL)
|
| 24 |
+
|
| 25 |
+
# create classifier function
|
| 26 |
+
def classify_sentiments(text):
|
| 27 |
+
text = preprocess(text)
|
| 28 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 29 |
+
output = model(**encoded_input)
|
| 30 |
+
scores = output[0][0].detach().numpy()
|
| 31 |
+
scores = softmax(scores)
|
| 32 |
+
|
| 33 |
+
# Print labels and scores
|
| 34 |
+
probs = {}
|
| 35 |
+
ranking = np.argsort(scores)
|
| 36 |
+
ranking = ranking[::-1]
|
| 37 |
+
|
| 38 |
+
for i in range(len(scores)):
|
| 39 |
+
l = config.id2label[ranking[i]]
|
| 40 |
+
s = scores[ranking[i]]
|
| 41 |
+
probs[l] = np.round(float(s), 4)
|
| 42 |
+
return probs
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
#build the Gradio app
|
| 46 |
+
gr.Interface(classify_sentiments, 'text', 'label').launch()
|
| 47 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scipy
|
| 2 |
+
gradio
|
| 3 |
+
numpy
|