ImageGen / app.py
TheAIBoi's picture
Update app.py
8af5338 verified
raw
history blame
12.6 kB
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel
from diffusers.utils import load_image
import torch
from typing import Tuple
from PIL import Image
from controlnet_aux import OpenposeDetector
import insightface
import onnxruntime
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "RunDiffusion/Juggernaut-XL-v9" # Replace to the model you would like to use
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9",
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
variant="fp16",
)
pipe.to(device)
controlnet_openpose = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sdxl_openpose", torch_dtype=torch.float16
).to(device)
openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth").to(device)
try:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-faceid_sdxl.bin")
except Exception as e:
print(f"Could not load IP-Adapter FaceID. Make sure the model exists and paths are correct: {e}")
print("Trying a common alternative: ip-adapter-plus-face_sdxl_vit-h.safetensors")
try:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
except Exception as e2:
print(f"Could not load second IP-Adapter variant: {e2}")
print("IP-Adapter will not be available. Please check your IP-Adapter setup.")
pipe.unload_ip_adapter()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
@spaces.GPU
def infer(
prompt,
negative_prompt,
style,
# Removed general img2img reference as we are specializing
input_image_pose, # New: for ControlNet OpenPose
pose_strength, # New: strength for ControlNet
input_image_face, # New: for IP-Adapter Face
face_fidelity, # New: fidelity/strength for IP-Adapter
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
generator = torch.Generator().manual_seed(seed)
# --- NEW: Prepare ControlNet and IP-Adapter inputs ---
controlnet_images = []
controlnet_conditioning_scales = []
controlnet_models_to_use = []
ip_adapter_image_embeddings = None # Will store the face embeddings
# Process Pose Reference
if input_image_pose:
# Preprocess the image to get the OpenPose skeleton
processed_pose_image = openpose_detector(input_image_pose)
controlnet_images.append(processed_pose_image)
controlnet_conditioning_scales.append(pose_strength)
controlnet_models_to_use.append(controlnet_openpose)
# Process Face Reference (IP-Adapter)
if input_image_face and pipe.has_lora_weights("ip_adapter"): # Check if IP-Adapter was loaded successfully
# For IP-Adapter FaceID, the pipeline itself usually handles embedding extraction
# You just pass the image directly.
# The scale is set before the call.
pipe.set_ip_adapter_scale(face_fidelity)
# ip_adapter_image_embeddings = pipe.encode_ip_adapter_image(input_image_face) # If you need to manually encode
# Often, you just pass the image to the main call directly if IP-Adapter is loaded.
# --- END NEW INPUT PREPARATION ---
# Adjusting the pipe call to use ControlNet and IP-Adapter
# Note: If no reference images are provided, it will fall back to text-to-image.
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=controlnet_images if controlnet_images else None, # Pass processed pose image(s) if available
controlnet_conditioning_scale=controlnet_conditioning_scales if controlnet_conditioning_scales else None,
controlnet=controlnet_models_to_use if controlnet_models_to_use else None,
ip_adapter_image=input_image_face if input_image_face else None, # Pass the raw face image for IP-Adapter
# ip_adapter_image_embeds=ip_adapter_image_embeddings, # Use this if you pre-encode
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A stunning woman standing on a beach at sunset, dramatic lighting, highly detailed",
"A man in a futuristic city, cyberpunk style, neon lights",
"An AI model posing with a friendly robot in a studio, professional photoshoot",
]
css = """#col-container {
margin: 0 auto;
max-width: 640px;
}"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # AI Instagram Model Creator")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Describe your AI model and scene (e.g., 'A confident woman in a red dress, city background')",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Reference Images", open=True):
gr.Markdown("Upload images to control pose and face consistency.")
input_image_pose = gr.Image(label="Human Pose Reference (for body posture)", type="pil", show_label=True)
pose_strength = gr.Slider(
label="Pose Control Strength (0.0 = ignore, 1.0 = strict adherence)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8, # Good starting point for strong pose control
)
gr.Markdown("---") # Separator
input_image_face = gr.Image(label="Face Reference (for facial consistency)", type="pil", show_label=True)
face_fidelity = gr.Slider(
label="Face Fidelity (0.0 = ignore, 1.0 = highly similar)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7, # Good starting point for face transfer
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="What you DON'T want in the image (e.g., 'deformed, blurry, text')",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0, # Increased max for more control
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100, # More typical steps for SDXL (20-50 usually sufficient)
step=1,
value=30,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
style_selection,
input_image_pose,
pose_strength,
input_image_face,
face_fidelity,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(share=True)