File size: 15,935 Bytes
5e045bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, Request
from fastapi.responses import JSONResponse
import torch
import os
from pydub import AudioSegment
import tempfile
from transformers import pipeline as transorm_pipline,AutoModelForSpeechSeq2Seq, AutoProcessor
from openai import OpenAI
from pydantic import BaseModel
import logging
import subprocess
from dotenv import load_dotenv
import re
import requests
from typing import Optional, Dict
import time
import numpy as np
import io

app = FastAPI()
load_dotenv()  
UPLOAD_FOLDER = tempfile.gettempdir()
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ['TRANSFORMERS_CACHE'] = '/asif/cache/'

logging.basicConfig(level=logging.INFO)

fluency_pipe = transorm_pipline("audio-classification", model="megathil/fluency_prediction")

# Define device and torch_dtype
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Define the Hugging Face model and processor
distil_model_id = "distil-whisper/distil-small.en"


distil_model = AutoModelForSpeechSeq2Seq.from_pretrained(
    distil_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
distil_model.to(device)

processor = AutoProcessor.from_pretrained(distil_model_id)

async def hello_world():
    return  {
        "Hello World"
    }

client = OpenAI(
    api_key=os.environ['AUTH_TOKEN_AI'],
    base_url="https://api.deepinfra.com/v1/openai",
)


class EnhanceTextRequest(BaseModel):
    text: str

class AnalyzeTextRequest(BaseModel):
    text: str
    question: str

class AnalyzeTextResponse(BaseModel):
    relevance_rating: int
    vocabulary_rating: int

class User(BaseModel):
    firstName: str
    lastName: Optional[str]
    city: Optional[str] = None
    college: Optional[str] = None
    department: Optional[str] = None
    course: Optional[str] = None

class ModuleModel(BaseModel):
    questions: Optional[Dict[str, str]] = None
    unitId: Optional[str] = None
    moduleId: Optional[str] = None

class MyModel(BaseModel):
    userProgressStatusId: str

# Define the enhance_text function
def enhance_text(text, question):
    response = client.chat.completions.create(
        model="meta-llama/Meta-Llama-3-8B-Instruct",
        messages=[
            {"role": "system", "content": "You will be provided with a job interview question and answer.Your task is to rewrite the answer in standard English, making it more comprehensive and suitable for an fresher in interview. Ensure the response is at least 80 words and includes any relevant standard points related to the question.Be concise and omit disclaimers."},
            {"role": "user", "content": f"question:{question} \n Answer:{text}"}
        ],
        temperature=0.7,
        max_tokens=400,
        top_p=1
    )
    enhanced_text = response.choices[0].message.content
    return enhanced_text

def extract_rating_and_reason(text, rating_pattern, reason_pattern):
    rating_match = re.search(rating_pattern, text, re.IGNORECASE)
    reason_match = re.search(reason_pattern, text, re.IGNORECASE | re.DOTALL)
    
    if rating_match and reason_match:
        rating = int(rating_match.group(1))
        reason = reason_match.group(1).strip()
        return {"rating": rating, "reason": reason}
    else:
        return {"rating": "", "reason": "Unable to retrieve rating and reason due to insufficient information."}

def vocabulary_text(text, question):
    response = client.chat.completions.create(
        model="meta-llama/Meta-Llama-3-8B-Instruct",
        messages=[
            {"role": "system", "content": "You will be provided with question and answer, and your task is to check the rate the Vocabulary in the answer in the range of 1-100 and reasoning (Provide answer in this format vocablary_rating : rating, reason: , in 100 words and Respond without any introductory or conclusion text)"},
            {"role": "user", "content": f"question:{question} \n Answer:{text}"}
        ],
        temperature=0.7,
        max_tokens=250,
        top_p=1
    )
    
    vocabulary_rating = response.choices[0].message.content
    print("vocabulary_rating-->",vocabulary_rating)
    # Define patterns to match rating and reason
    vocab_rating_pattern = r"(?:vocabulary\s*rating|vocab\.\s*rating|vocab\s*rating|rating)\s*:\s*(\d+)"
    reason_pattern = r"reason\s*:\s*(.*)"

    # Extract and format the rating and reason
    result = extract_rating_and_reason(vocabulary_rating, vocab_rating_pattern, reason_pattern)
    formatted_vocabulary_rating = {"Vocabulary_rating": result["rating"], "reason": result["reason"]}
    
    return formatted_vocabulary_rating

def relevance_check(text, question):
    response = client.chat.completions.create(
        model="meta-llama/Meta-Llama-3-8B-Instruct",
        messages=[
            {"role": "system", "content": "You will be provided with question and answer from an job interview and your task is to check the Answer is relevant to the question in the range of 1-100 and reasoning (Provide answer in this format relevance_rating : rating , reason: , in 100 words and Respond without any introductory or conclusion text)"},
            {"role": "user", "content": f"question:{question} \n Answer:{text}"}
        ],
        temperature=0.7,
        max_tokens=250,
        top_p=1
    )
    relevance_rating = response.choices[0].message.content
    print("relevance_rating-->",relevance_rating)
    # Define patterns to match rating and reason
    rel_rating_pattern = r"(?:relevance\s*rating|rel\.\s*rating|rel\s*rating|rating)\s*:\s*(\d+)"
    reason_pattern = r"reason\s*:\s*(.*)"

    # Extract and format the rating and reason
    result = extract_rating_and_reason(relevance_rating, rel_rating_pattern, reason_pattern)
    formatted_relevance_rating = {"Relevance_rating": result["rating"], "reason": result["reason"]}
    
    return formatted_relevance_rating

def transcribe_audio(file_path: str) -> str:
    whisper = transorm_pipline(
        "automatic-speech-recognition",
        model=distil_model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        max_new_tokens=128,
        torch_dtype=torch_dtype,
        device=device,
    )
    transcription = whisper(file_path, chunk_length_s=30, stride_length_s=5, batch_size=8)
    return transcription

def calculate_speech_rate(text, audio_duration):
    # Calculate the word count from the text
    full_transcription = text['text']
    word_count = len(full_transcription.split())
    logging.info(f"Total word count: {word_count}")
    # Calculate the speech rate in words per minute
    speech_rate_wpm = word_count / audio_duration * 60
    
    # Define minimum and maximum speech rates for normalization
    min_speech_rate = 80  # words per minute (0%)
    max_speech_rate = 200  # words per minute (100%)
    
    # Normalize the speech rate to a percentage
    if speech_rate_wpm < min_speech_rate:
        speech_rate_percentage = 0
    elif speech_rate_wpm > max_speech_rate:
        speech_rate_percentage = 100
    else:
        speech_rate_percentage = ((speech_rate_wpm - min_speech_rate) / 
                                  (max_speech_rate - min_speech_rate)) * 100
    
    return speech_rate_percentage

@app.post("/process_audio_master")
async def process_audio(
    request: Request,
    audio_file: UploadFile = File(...),
    question: Optional[str] = Form("Tell me about yourself?"),
    unitId: Optional[str] = Form(""),
    moduleId: Optional[str] = Form(""),
    questionId: Optional[str] = Form(""),
    userProgressStatusId: Optional[str] = Form(""),
    firstName: Optional[str] = Form(""),
    lastName: Optional[str] = Form(""),
    city: Optional[str] = Form(""),
    college: Optional[str] = Form(""),
    department: Optional[str] = Form(""),
    course: Optional[str] = Form(""),
    userId: Optional[str] = Form("")

):
    # Logging the raw request data
    logging.info(f"Request headers: {request.headers}")
    logging.info(f"Request query params: {request.query_params}")
    logging.info(f"Request path params: {request.path_params}")
    logging.info(f"Request cookies: {request.cookies}")

    # Logging form data and file details
    logging.info(f"Received audio file: {audio_file.filename}")
    logging.info(f"Received question: {question}")
    user = {
        "firstName": firstName,
        "lastName": lastName,
        "city": city,
        "college": college,
        "department": department,
        "course": course,
    }
    logging.info(user)
    start_time = time.time()
    try:
        file_path = os.path.join(UPLOAD_FOLDER, audio_file.filename)
        with open(file_path, "wb") as f:
            f.write(await audio_file.read())
            
        filename = audio_file.filename
        file_size_bytes = os.path.getsize(file_path)
        file_size_mb = file_size_bytes / (1024 * 1024)
        logging.info(f"File Size: {file_size_mb:.2f} MB")
        if filename.endswith(('.mp4', '.avi', '.mkv', '.mov')):
            try:
                output_audio_path = os.path.join(UPLOAD_FOLDER, 'output_audio.mp3')
                command = ['ffmpeg', '-i', file_path, '-vn', '-acodec', 'libmp3lame', '-y', output_audio_path]
                subprocess.run(command, check=True)
                audio_file_path = output_audio_path
            except Exception as e:
                return JSONResponse(content={'error': f'Error converting video to audio: {str(e)}'}, status_code=500)
        elif filename.endswith('.mp3'):
            try:
                output_audio_path = os.path.join(UPLOAD_FOLDER, filename.rsplit('.', 1)[0] + '.wav')
                command = ['ffmpeg', '-i', file_path, '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', '-y', output_audio_path]
                subprocess.run(command, check=True)
                audio_file_path = output_audio_path
            except Exception as e:
                return JSONResponse(content={'error': f'Error converting MP3 to WAV: {str(e)}'}, status_code=500)
        else:
            audio_file_path = file_path

        audio = AudioSegment.from_file(audio_file_path)
        audio_duration = audio.duration_seconds
        logging.info(f"Audio Duration: {audio_duration}")
        
        if audio_duration < 15:
            data = {
            "code":400,
            "messageCode":"1020",
            "message": "Recording Duration too short."
            }
            
            return JSONResponse(content=data)
        
        transcribe_results = transcribe_audio(audio_file_path)
        
        if not transcribe_results['text'].strip():
            data = {
            "code":400,
            "messageCode":"1020",
            "message": "No content in Audio"
        }
            
            
        elif len(transcribe_results['text'].split()) < 20:
            data = {
            "code":400,
            "messageCode":"1020",
            "message": "Audio lacks content"
            }
      
            
            return JSONResponse(content=data)
        else:
            logging.info(f"transcribed content from the audio: {transcribe_results}")
        
        transcribed_content = transcribe_results['text']
        # logging.info(f"transcribed content from the audio: {transcribed_content}")
        logging.info(f"Audio Duration: {audio_duration}")
        # Trim audio to 10 seconds for emotion and fluency analysis
        trimmed_audio = audio[:10000]  # First 10 seconds
        trimmed_audio_path = os.path.join(UPLOAD_FOLDER, 'trimmed_audio.wav')
        trimmed_audio.export(trimmed_audio_path, format="wav")
        
        # Get the volume level of the audio
        volume_db = get_audio_volume_level(audio)
        volume_classification, score = classify_volume_level(volume_db)
        emotionRecognition={
        "label": volume_classification, "score": score
        }
        fluency_results = fluency_pipe(trimmed_audio_path)
        max_result = max(fluency_results, key=lambda x: x['score'])
        fluencyLevel = {
            "label": max_result['label'],
            "score": round(max_result['score'], 2)
        }
        # fluencyLevel = {
        #     "label": "Fluent",
        #    "score":  0.99
        # }

        enhance_text_result = enhance_text(transcribe_results['text'], question)

        relevance_rating = relevance_check(transcribe_results['text'], question)
        contentRelevanceRating = relevance_rating['Relevance_rating']
        contentRelevanceRatingReason = relevance_rating['reason']
    
        voacablary_level = vocabulary_text(transcribe_results['text'], question)
        vocabularyRating = voacablary_level['Vocabulary_rating']
        vocabularyRatingReason = voacablary_level['reason']

        speech_rate = calculate_speech_rate(transcribe_results, audio_duration)

        os.remove(file_path)
        os.remove(trimmed_audio_path)
        if audio_file_path != file_path:
            os.remove(audio_file_path)
        
        node_data = {
            "aiToken": "25b0b507a8c467b4bd0d011df44fe72b6a4aa38ee60a868f3705745c45254aa6",
            "userId": userId,
            "userProgressStatusId": userProgressStatusId,
            "unitId": unitId,
            "moduleId": moduleId,
            "questionId": questionId,
             "aiResponseData": {
            'contentRelevanceRating':contentRelevanceRating,
            'contentRelevanceRatingReason':contentRelevanceRatingReason,
            'vocabularyRating':vocabularyRating,
            'vocabularyRatingReason':vocabularyRatingReason,
            "transcription": transcribe_results,
            "emotionRecognition": emotionRecognition,
            "fluencyLevel": fluencyLevel,
            "enhancedText": enhance_text_result,
            "speechRate": speech_rate,
            }
        }
        data = {
            "code": 200,
            "messageCode":"1004",
            "data":{
            'contentRelevanceRating':contentRelevanceRating,
            'contentRelevanceRatingReason':contentRelevanceRatingReason,
            'vocabularyRating':vocabularyRating,
            'vocabularyRatingReason':vocabularyRatingReason,
            "transcription": transcribe_results,
            "emotionRecognition": emotionRecognition,
            "fluencyLevel": fluencyLevel,
            "enhancedText": enhance_text_result,
            "speechRate": speech_rate,
            },
            "message": "Record(s) Found."
        }
        node_server_url = "https://megathil.shenll.com/processAudio/saveUserResult"
        requests.post(node_server_url, json=node_data)
        end_time = time.time()  # Record end time
        elapsed_time = end_time - start_time  # Calculate elapsed time
        logging.info(f"Total processing time: {elapsed_time:.2f} seconds")
        
        return JSONResponse(content=data)

    except Exception as e:
        logging.error(f"Error processing request: {e}")
        return JSONResponse(content={"error": str(e)}, status_code=500)
    
def get_audio_volume_level(audio: AudioSegment) -> float:
    # Convert the audio data to a numpy array
    samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
    
    # Calculate the root mean square (RMS) of the samples
    rms = np.sqrt(np.mean(samples**2))
    
    # Convert RMS to decibels (dB)
    if rms == 0:
        rms_db = -np.inf  # Use -infinity dB for silence
    else:
        rms_db = 20 * np.log10(rms)
    
    return rms_db

def classify_volume_level(volume_db: float) -> str:
    """Classify the audio volume level into 'High', 'Medium', or 'Low' with specific scores."""
    if volume_db == -np.inf or volume_db < 50.0:
        return "Low", 40.00
    elif 50.0 <= volume_db < 70.0:
        return "Medium", 60.00
    elif volume_db >= 70.0:
        return "High", 100.00
    else:
        return "High", 100.00