Spaces:
Paused
Paused
Jinglong Xiong
commited on
Commit
·
c0f4df5
1
Parent(s):
8111433
add analysis script
Browse files- eval_analysis.py +299 -0
eval_analysis.py
CHANGED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
# Set style
|
9 |
+
plt.style.use('ggplot')
|
10 |
+
sns.set_palette("Set2")
|
11 |
+
plt.rcParams['figure.figsize'] = (12, 8)
|
12 |
+
|
13 |
+
# Load the data
|
14 |
+
results_csv = "results/summary_20250421_230054.csv"
|
15 |
+
results_json = "results/results_20250421_230054.json"
|
16 |
+
|
17 |
+
df = pd.read_csv(results_csv)
|
18 |
+
|
19 |
+
# Extract category from description if not already available
|
20 |
+
def extract_category(row):
|
21 |
+
"""
|
22 |
+
Determines the category of an image based on its description or existing category.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
row: A pandas DataFrame row containing 'category' and 'description' fields
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
str: The determined category ('fashion', 'landscape', 'abstract', or 'unknown')
|
29 |
+
"""
|
30 |
+
if pd.notna(row['category']) and row['category'] != 'unknown':
|
31 |
+
return row['category']
|
32 |
+
|
33 |
+
# Try to extract from description
|
34 |
+
desc = row['description'].lower()
|
35 |
+
if any(keyword in desc for keyword in ['coat', 'pants', 'shirt', 'dress', 'scarf', 'shoes']):
|
36 |
+
return 'fashion'
|
37 |
+
elif any(keyword in desc for keyword in ['forest', 'beach', 'mountain', 'ocean', 'lake', 'sky']):
|
38 |
+
return 'landscape'
|
39 |
+
elif any(keyword in desc for keyword in ['rectangle', 'circle', 'triangle', 'shape', 'spiral']):
|
40 |
+
return 'abstract'
|
41 |
+
else:
|
42 |
+
return 'unknown'
|
43 |
+
|
44 |
+
# Clean the data
|
45 |
+
df['category'] = df.apply(extract_category, axis=1)
|
46 |
+
df['generation_time'] = pd.to_numeric(df['generation_time'], errors='coerce')
|
47 |
+
|
48 |
+
# 1. Model Performance Comparison
|
49 |
+
def plot_model_comparison():
|
50 |
+
"""
|
51 |
+
Creates boxplots comparing model performance across three metrics:
|
52 |
+
VQA score, aesthetic score, and fidelity score.
|
53 |
+
|
54 |
+
Saves the resulting plot to 'results/model_comparison.png'.
|
55 |
+
"""
|
56 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
57 |
+
|
58 |
+
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
|
59 |
+
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
|
60 |
+
|
61 |
+
for i, (metric, title) in enumerate(zip(metrics, titles)):
|
62 |
+
sns.boxplot(x='model', y=metric, data=df, ax=axes[i])
|
63 |
+
axes[i].set_title(f'{title} by Model')
|
64 |
+
axes[i].set_ylim([0, 1])
|
65 |
+
|
66 |
+
plt.tight_layout()
|
67 |
+
plt.savefig('results/model_comparison.png')
|
68 |
+
plt.close()
|
69 |
+
|
70 |
+
# 2. Category Performance Analysis
|
71 |
+
def plot_category_performance():
|
72 |
+
"""
|
73 |
+
Creates boxplots showing performance by category and model for three metrics:
|
74 |
+
VQA score, aesthetic score, and fidelity score.
|
75 |
+
|
76 |
+
Saves the resulting plot to 'results/category_performance.png'.
|
77 |
+
"""
|
78 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
79 |
+
|
80 |
+
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
|
81 |
+
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
|
82 |
+
|
83 |
+
for i, (metric, title) in enumerate(zip(metrics, titles)):
|
84 |
+
sns.boxplot(x='category', y=metric, hue='model', data=df, ax=axes[i])
|
85 |
+
axes[i].set_title(f'{title} by Category and Model')
|
86 |
+
axes[i].set_ylim([0, 1])
|
87 |
+
if i > 0:
|
88 |
+
axes[i].get_legend().remove()
|
89 |
+
|
90 |
+
axes[0].legend(title='Model')
|
91 |
+
plt.tight_layout()
|
92 |
+
plt.savefig('results/category_performance.png')
|
93 |
+
plt.close()
|
94 |
+
|
95 |
+
# 3. Generation Time Analysis
|
96 |
+
def plot_generation_time():
|
97 |
+
"""
|
98 |
+
Creates visualizations of generation time analysis:
|
99 |
+
1. A boxplot showing generation time by model
|
100 |
+
2. Scatter plots showing the relationship between generation time and quality metrics
|
101 |
+
|
102 |
+
Saves the resulting plots to 'results/generation_time.png' and 'results/quality_vs_time.png'.
|
103 |
+
"""
|
104 |
+
plt.figure(figsize=(10, 6))
|
105 |
+
sns.boxplot(x='model', y='generation_time', data=df)
|
106 |
+
plt.title('Generation Time by Model')
|
107 |
+
plt.ylabel('Time (seconds)')
|
108 |
+
plt.tight_layout()
|
109 |
+
plt.savefig('results/generation_time.png')
|
110 |
+
plt.close()
|
111 |
+
|
112 |
+
# Generation time vs quality scatter plot
|
113 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
114 |
+
|
115 |
+
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
|
116 |
+
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
|
117 |
+
|
118 |
+
for i, (metric, title) in enumerate(zip(metrics, titles)):
|
119 |
+
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
|
120 |
+
model_data = df[df['model'] == model]
|
121 |
+
axes[i].scatter(model_data['generation_time'], model_data[metric],
|
122 |
+
alpha=0.6, label=model, c=color)
|
123 |
+
|
124 |
+
axes[i].set_title(f'{title} vs. Generation Time')
|
125 |
+
axes[i].set_xlabel('Generation Time (seconds)')
|
126 |
+
axes[i].set_ylabel(title)
|
127 |
+
axes[i].legend()
|
128 |
+
|
129 |
+
plt.tight_layout()
|
130 |
+
plt.savefig('results/quality_vs_time.png')
|
131 |
+
plt.close()
|
132 |
+
|
133 |
+
# 4. Description complexity vs performance
|
134 |
+
def plot_complexity_performance():
|
135 |
+
"""
|
136 |
+
Analyzes the relationship between description complexity (word count) and
|
137 |
+
performance metrics, creating scatter plots with trend lines.
|
138 |
+
|
139 |
+
Saves the resulting plot to 'results/complexity_performance.png'.
|
140 |
+
"""
|
141 |
+
df['description_length'] = df['description'].str.len()
|
142 |
+
df['word_count'] = df['description'].str.split().str.len()
|
143 |
+
|
144 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
|
145 |
+
|
146 |
+
metrics = ['vqa_score', 'aesthetic_score', 'fidelity_score']
|
147 |
+
titles = ['VQA Score', 'Aesthetic Score', 'Fidelity Score']
|
148 |
+
|
149 |
+
for i, (metric, title) in enumerate(zip(metrics, titles)):
|
150 |
+
for model, color in zip(df['model'].unique(), ['#1f77b4', '#ff7f0e']):
|
151 |
+
model_data = df[df['model'] == model]
|
152 |
+
axes[i].scatter(model_data['word_count'], model_data[metric],
|
153 |
+
alpha=0.6, label=model, c=color)
|
154 |
+
|
155 |
+
# Add trendline
|
156 |
+
z = np.polyfit(model_data['word_count'], model_data[metric], 1)
|
157 |
+
p = np.poly1d(z)
|
158 |
+
axes[i].plot(sorted(model_data['word_count']), p(sorted(model_data['word_count'])),
|
159 |
+
c=color, linestyle='--')
|
160 |
+
|
161 |
+
axes[i].set_title(f'{title} vs. Description Complexity')
|
162 |
+
axes[i].set_xlabel('Word Count')
|
163 |
+
axes[i].set_ylabel(title)
|
164 |
+
axes[i].legend()
|
165 |
+
|
166 |
+
plt.tight_layout()
|
167 |
+
plt.savefig('results/complexity_performance.png')
|
168 |
+
plt.close()
|
169 |
+
|
170 |
+
# 5. Success and failure examples
|
171 |
+
def analyze_best_worst_examples():
|
172 |
+
"""
|
173 |
+
Identifies and prints the top 10 most successful and least successful generations
|
174 |
+
based on fidelity score.
|
175 |
+
|
176 |
+
Creates directories for sample SVG and PNG files if they don't exist.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
tuple: (success_df, failure_df) DataFrames containing the best and worst examples
|
180 |
+
"""
|
181 |
+
# Create directory for result samples
|
182 |
+
Path("results/sample_svg").mkdir(exist_ok=True)
|
183 |
+
Path("results/sample_png").mkdir(exist_ok=True)
|
184 |
+
|
185 |
+
# Load detailed results
|
186 |
+
with open(results_json, 'r') as f:
|
187 |
+
results_data = json.load(f)
|
188 |
+
|
189 |
+
# Create success/failure dataframes
|
190 |
+
success_df = df.nlargest(10, 'fidelity_score')
|
191 |
+
failure_df = df.nsmallest(10, 'fidelity_score')
|
192 |
+
|
193 |
+
# Print success examples
|
194 |
+
print("Top 10 Successful Generations:")
|
195 |
+
print(success_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
|
196 |
+
|
197 |
+
# Print failure examples
|
198 |
+
print("\nTop 10 Failed Generations:")
|
199 |
+
print(failure_df[['model', 'description', 'vqa_score', 'aesthetic_score', 'fidelity_score']].to_string(index=False))
|
200 |
+
|
201 |
+
return success_df, failure_df
|
202 |
+
|
203 |
+
# 6. Summary statistics
|
204 |
+
def print_summary_stats():
|
205 |
+
"""
|
206 |
+
Calculates and prints summary statistics for model performance:
|
207 |
+
1. Overall stats by model (mean, std, min, max for each metric)
|
208 |
+
2. Performance by category and model
|
209 |
+
|
210 |
+
Also creates a radar chart visualizing fidelity scores by category and model,
|
211 |
+
saved to 'results/category_radar.png'.
|
212 |
+
"""
|
213 |
+
# Overall stats by model
|
214 |
+
model_stats = df.groupby('model').agg({
|
215 |
+
'vqa_score': ['mean', 'std', 'min', 'max'],
|
216 |
+
'aesthetic_score': ['mean', 'std', 'min', 'max'],
|
217 |
+
'fidelity_score': ['mean', 'std', 'min', 'max'],
|
218 |
+
'generation_time': ['mean', 'std', 'min', 'max']
|
219 |
+
})
|
220 |
+
|
221 |
+
print("Overall Model Performance:")
|
222 |
+
print(model_stats)
|
223 |
+
|
224 |
+
# Stats by category and model
|
225 |
+
category_stats = df.groupby(['model', 'category']).agg({
|
226 |
+
'vqa_score': 'mean',
|
227 |
+
'aesthetic_score': 'mean',
|
228 |
+
'fidelity_score': 'mean',
|
229 |
+
'generation_time': 'mean'
|
230 |
+
}).reset_index()
|
231 |
+
|
232 |
+
print("\nPerformance by Category and Model:")
|
233 |
+
print(category_stats.to_string())
|
234 |
+
|
235 |
+
# Create a radar chart for category performance
|
236 |
+
categories = category_stats['category'].unique()
|
237 |
+
models = category_stats['model'].unique()
|
238 |
+
|
239 |
+
plt.figure(figsize=(10, 8))
|
240 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
241 |
+
angles += angles[:1] # Close the loop
|
242 |
+
|
243 |
+
ax = plt.subplot(111, polar=True)
|
244 |
+
|
245 |
+
for model in models:
|
246 |
+
model_data = category_stats[category_stats['model'] == model]
|
247 |
+
values = []
|
248 |
+
for category in categories:
|
249 |
+
cat_data = model_data[model_data['category'] == category]
|
250 |
+
if not cat_data.empty:
|
251 |
+
values.append(cat_data['fidelity_score'].values[0])
|
252 |
+
else:
|
253 |
+
values.append(0)
|
254 |
+
values += values[:1] # Close the loop
|
255 |
+
|
256 |
+
ax.plot(angles, values, linewidth=2, label=model)
|
257 |
+
ax.fill(angles, values, alpha=0.25)
|
258 |
+
|
259 |
+
ax.set_xticks(angles[:-1])
|
260 |
+
ax.set_xticklabels(categories)
|
261 |
+
ax.set_title('Fidelity Score by Category and Model')
|
262 |
+
ax.legend(loc='upper right')
|
263 |
+
|
264 |
+
plt.tight_layout()
|
265 |
+
plt.savefig('results/category_radar.png')
|
266 |
+
plt.close()
|
267 |
+
|
268 |
+
# Main analysis function
|
269 |
+
def run_analysis():
|
270 |
+
"""
|
271 |
+
Main function that runs the complete analysis pipeline:
|
272 |
+
1. Creates necessary directories
|
273 |
+
2. Generates all visualization plots
|
274 |
+
3. Prints summary statistics
|
275 |
+
4. Analyzes best and worst examples
|
276 |
+
|
277 |
+
All results are saved to the 'results/' directory.
|
278 |
+
"""
|
279 |
+
print("Starting analysis of evaluation results...")
|
280 |
+
|
281 |
+
# Create plots directory if it doesn't exist
|
282 |
+
Path("results").mkdir(exist_ok=True)
|
283 |
+
|
284 |
+
# Generate all plots
|
285 |
+
plot_model_comparison()
|
286 |
+
plot_category_performance()
|
287 |
+
plot_generation_time()
|
288 |
+
plot_complexity_performance()
|
289 |
+
|
290 |
+
# Print summary statistics
|
291 |
+
print_summary_stats()
|
292 |
+
|
293 |
+
# Analyze best and worst examples
|
294 |
+
success_df, failure_df = analyze_best_worst_examples()
|
295 |
+
|
296 |
+
print("\nAnalysis complete. Visualizations saved to 'results/' directory.")
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
run_analysis()
|