Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						c4f1082
	
1
								Parent(s):
							
							9013494
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -250,23 +250,13 @@ def predict( | |
| 250 | 
             
                    video = read_video_pyav(container=container, indices=indices)
         | 
| 251 |  | 
| 252 | 
             
                if uid in generated_audio_files and len(generated_audio_files[uid]) != 0:
         | 
| 253 | 
            -
                    audio_length_in_s = min(get_audio_length(generated_audio_files[uid][-1]), 30)
         | 
| 254 | 
             
                    sample_rate = 24000
         | 
| 255 | 
             
                    waveform, sr = torchaudio.load(generated_audio_files[uid][-1])
         | 
| 256 | 
             
                    if sample_rate != sr:
         | 
| 257 | 
             
                        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
         | 
| 258 | 
             
                    audio = torch.mean(waveform, 0)
         | 
| 259 | 
            -
                    audio_length_in_s = min(int(len(audio)//sample_rate), 30)
         | 
| 260 | 
            -
                    print(f"Audio Length: {audio_length_in_s}")
         | 
| 261 | 
             
                else:
         | 
| 262 | 
             
                    generated_audio_files[uid] = []
         | 
| 263 | 
            -
                if video_path is not None:
         | 
| 264 | 
            -
                    audio_length_in_s = min(get_video_length(video_path), 30)
         | 
| 265 | 
            -
                    print(f"Video Length: {audio_length_in_s}")
         | 
| 266 | 
            -
                if audio_path is not None:
         | 
| 267 | 
            -
                    audio_length_in_s = min(get_audio_length(audio_path), 30)
         | 
| 268 | 
            -
                    generated_audio_files[uid].append(audio_path)
         | 
| 269 | 
            -
                    print(f"Audio Length: {audio_length_in_s}")
         | 
| 270 |  | 
| 271 | 
             
                print(image, video, audio)
         | 
| 272 | 
             
                response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
         | 
|  | |
| 250 | 
             
                    video = read_video_pyav(container=container, indices=indices)
         | 
| 251 |  | 
| 252 | 
             
                if uid in generated_audio_files and len(generated_audio_files[uid]) != 0:
         | 
|  | |
| 253 | 
             
                    sample_rate = 24000
         | 
| 254 | 
             
                    waveform, sr = torchaudio.load(generated_audio_files[uid][-1])
         | 
| 255 | 
             
                    if sample_rate != sr:
         | 
| 256 | 
             
                        waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
         | 
| 257 | 
             
                    audio = torch.mean(waveform, 0)
         | 
|  | |
|  | |
| 258 | 
             
                else:
         | 
| 259 | 
             
                    generated_audio_files[uid] = []
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 260 |  | 
| 261 | 
             
                print(image, video, audio)
         | 
| 262 | 
             
                response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
         | 
 
			
