Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -34,6 +34,10 @@ dotenv.load_dotenv()
|
|
34 |
seamless_client = Client("facebook/seamless_m4t")
|
35 |
HuggingFace_Token = os.getenv("HuggingFace_Token")
|
36 |
hf_token = os.getenv("HuggingFace_Token")
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def check_hallucination(assertion,citation):
|
39 |
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
|
@@ -336,13 +340,6 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
|
|
336 |
|
337 |
return response_text
|
338 |
|
339 |
-
# Define the device
|
340 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
341 |
-
|
342 |
-
# Use the base model's ID
|
343 |
-
base_model_id = "stabilityai/stablelm-3b-4e1t"
|
344 |
-
model_directory = "Tonic/stablemed"
|
345 |
-
|
346 |
# Instantiate the Tokenizer
|
347 |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
|
348 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
|
@@ -360,7 +357,7 @@ class ChatBot:
|
|
360 |
self.history = []
|
361 |
|
362 |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
363 |
-
formatted_input = f"<s>[INST]
|
364 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
365 |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
366 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
34 |
seamless_client = Client("facebook/seamless_m4t")
|
35 |
HuggingFace_Token = os.getenv("HuggingFace_Token")
|
36 |
hf_token = os.getenv("HuggingFace_Token")
|
37 |
+
base_model_id = os.getenv('BASE_MODEL_ID', 'default_base_model_id')
|
38 |
+
model_directory = os.getenv('MODEL_DIRECTORY', 'default_model_directory')
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
|
41 |
|
42 |
def check_hallucination(assertion,citation):
|
43 |
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
|
|
|
340 |
|
341 |
return response_text
|
342 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
# Instantiate the Tokenizer
|
344 |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
|
345 |
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
|
|
|
357 |
self.history = []
|
358 |
|
359 |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
360 |
+
formatted_input = f"<s>[INST] {user_input}</s>[/INST]{system_prompt}"
|
361 |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
362 |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
363 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|