Tonic commited on
Commit
eae970b
1 Parent(s): a1b9406

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -44
app.py CHANGED
@@ -18,6 +18,14 @@ import io
18
  import hashlib
19
  import datetime
20
  from utils import build_logger
 
 
 
 
 
 
 
 
21
 
22
  dotenv.load_dotenv()
23
 
@@ -312,33 +320,76 @@ def convert_to_markdown(vectara_response_json):
312
  return f"{markdown_summary}**Sources:**\n{markdown_sources}"
313
  else:
314
  return "No data found in the response."
315
- # Main function to handle the Gradio interface logic
316
 
317
- def process_summary_with_openai(summary):
318
- """
319
- This function takes a summary text as input and processes it with OpenAI's GPT model.
320
- """
321
- try:
322
- # Ensure that the OpenAI client is properly initialized
323
- client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
324
-
325
- # Create the prompt for OpenAI's completion
326
- prompt = "You are clinical education consultant ready to do just about anything for his students. You are discussing training cases with students at TonicUniversity. You will recieve keywords or an image description. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description. You will recieve a summary assessment in a language, always provide a complete answer. Exclude any other commentary:"
327
-
328
- # Call the OpenAI API with the prompt and the summary
329
- completion = client.chat.completions.create(
330
- model="gpt-4-1106-preview", # Make sure to use the correct model name
331
- messages=[
332
- {"role": "system", "content": prompt},
333
- {"role": "user", "content": summary}
334
- ]
335
- )
336
-
337
- # Extract the content from the completion
338
- final_summary = completion.choices[0].message.content
339
- return final_summary
340
- except Exception as e:
341
- return str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
 
343
  def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
344
  try:
@@ -378,7 +429,7 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
378
  markdown_output += "\n\n**Original Image Description:**\n" + image_description
379
 
380
  # Process the summary with OpenAI
381
- final_response = process_summary_with_openai(markdown_output)
382
  print("Final Response:", final_response) # Debug print
383
 
384
  # Evaluate hallucination
@@ -396,15 +447,17 @@ def process_and_query(input_language=None, audio_input=None, image_input=None, t
396
  welcome_message = """
397
  # 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
398
 
399
- 🗣️📝 This is an educational and accessible conversational tool to improve wellness and sanitation in support of public health.
400
 
401
  ### How To Use ⚕🗣️😷MultiMed⚕:
402
 
403
  🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
404
 
405
- 📚🌟💼 The quality of the answers depends on the quality of the dataset, so if you want to see some data represented here, do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
 
 
406
 
407
- #### Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
408
  """
409
 
410
 
@@ -520,14 +573,10 @@ with gr.Blocks(theme='ParityError/Anime') as iface :
520
  input_language = gr.Dropdown(languages, label="select the language",value="English",interactive=True)
521
  audio_input = gr.Audio(label="speak",type="filepath",sources="microphone")
522
  audio_output = gr.Markdown(label="output text")
523
- # audio_button = gr.Button("process audio")
524
- # audio_button.click(process_speech, inputs=[input_language,audio_input], outputs=audio_output)
525
  gr.Examples([["English","sample_input.mp3"]],inputs=[input_language,audio_input])
526
  with gr.Accordion("image identification",open=True):
527
  image_input = gr.Image(label="upload image")
528
  image_output = gr.Markdown(label="output text")
529
- # image_button = gr.Button("process image")
530
- # image_button.click(process_image, inputs=image_input, outputs=image_output)
531
  gr.Examples(["sick person.jpeg"],inputs=[image_input])
532
  with gr.Accordion("text summarization",open=True):
533
  text_input = gr.Textbox(label="input text",lines=5)
@@ -545,15 +594,5 @@ with gr.Blocks(theme='ParityError/Anime') as iface :
545
  ["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
546
  ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
547
  ],inputs=[text_input])
548
- # with gr.Accordion("hallucination check",open=True):
549
- # assertion = gr.Textbox(label="assertion")
550
- # citation = gr.Textbox(label="citation text")
551
- # hullucination_output = gr.Markdown(label="output text")
552
- # hallucination_button = gr.Button("check hallucination")
553
- # gr.Examples([["i am drunk","sarah is pregnant"]],inputs=[assertion,citation])
554
- # hallucination_button.click(check_hallucination,inputs=[assertion,citation],outputs=hullucination_output)
555
-
556
-
557
-
558
 
559
  iface.queue().launch(show_error=True,debug=True)
 
18
  import hashlib
19
  import datetime
20
  from utils import build_logger
21
+ from transformers import AutoTokenizer, MistralForCausalLM
22
+ import torch
23
+ import random
24
+ from textwrap import wrap
25
+ from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
26
+ from peft import PeftModel, PeftConfig
27
+ import torch
28
+ import os
29
 
30
  dotenv.load_dotenv()
31
 
 
320
  return f"{markdown_summary}**Sources:**\n{markdown_sources}"
321
  else:
322
  return "No data found in the response."
 
323
 
324
+ # Functions to Wrap the Prompt Correctly
325
+ def wrap_text(text, width=90):
326
+ lines = text.split('\n')
327
+ wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
328
+ wrapped_text = '\n'.join(wrapped_lines)
329
+ return wrapped_text
330
+ def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
331
+
332
+ # Combine user input and system prompt
333
+ formatted_input = f"{user_input}{system_prompt}"
334
+
335
+ # Encode the input text
336
+ encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
337
+ model_inputs = encodeds.to(device)
338
+
339
+ # Generate a response using the model
340
+ output = model.generate(
341
+ **model_inputs,
342
+ max_length=max_length,
343
+ use_cache=True,
344
+ early_stopping=True,
345
+ bos_token_id=model.config.bos_token_id,
346
+ eos_token_id=model.config.eos_token_id,
347
+ pad_token_id=model.config.eos_token_id,
348
+ temperature=0.1,
349
+ do_sample=True
350
+ )
351
+
352
+ # Decode the response
353
+ response_text = tokenizer.decode(output[0], skip_special_tokens=True)
354
+
355
+ return response_text
356
+
357
+ # Define the device
358
+ device = "cuda" if torch.cuda.is_available() else "cpu"
359
+
360
+ # Use the base model's ID
361
+ base_model_id = "stabilityai/stablelm-3b-4e1t"
362
+ model_directory = "Tonic/stablemed"
363
+
364
+ # Instantiate the Tokenizer
365
+ tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left")
366
+ # tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
367
+ tokenizer.pad_token = tokenizer.eos_token
368
+ tokenizer.padding_side = 'left'
369
+
370
+ # Load the PEFT model
371
+ peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
372
+ peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True)
373
+ peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
374
+
375
+
376
+ class ChatBot:
377
+ def __init__(self):
378
+ self.history = []
379
+
380
+ def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
381
+ formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
382
+ user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
383
+ response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
384
+ response_text = tokenizer.decode(response[0], skip_special_tokens=True)
385
+ return response_text
386
+
387
+ def process_summary_with_stablemed(summary):
388
+ system_prompt = "You are a clinical education consultant ready to do just about anything for your students. You are discussing training cases with students at TonicUniversity. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description. Always provide a complete answer. Exclude any other commentary:"
389
+ response_text = bot.predict(summary, system_prompt)
390
+ return response_text
391
+
392
+ # Main function to handle the Gradio interface logic
393
 
394
  def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
395
  try:
 
429
  markdown_output += "\n\n**Original Image Description:**\n" + image_description
430
 
431
  # Process the summary with OpenAI
432
+ final_response = process_summary_with_stablemed(markdown_output)
433
  print("Final Response:", final_response) # Debug print
434
 
435
  # Evaluate hallucination
 
447
  welcome_message = """
448
  # 👋🏻Welcome to ⚕🗣️😷MultiMed - Access Chat ⚕🗣️😷
449
 
450
+ 🗣️📝 This is an educational and accessible conversational tool.
451
 
452
  ### How To Use ⚕🗣️😷MultiMed⚕:
453
 
454
  🗣️📝Interact with ⚕🗣️😷MultiMed⚕ in any language using image, audio or text!
455
 
456
+ 📚🌟💼 that uses [Tonic/stablemed](https://huggingface.co/Tonic/stablemed) and [adept/fuyu-8B](https://huggingface.co/adept/fuyu-8b) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval.
457
+ do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
458
+ ### Join us :
459
 
460
+ 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
461
  """
462
 
463
 
 
573
  input_language = gr.Dropdown(languages, label="select the language",value="English",interactive=True)
574
  audio_input = gr.Audio(label="speak",type="filepath",sources="microphone")
575
  audio_output = gr.Markdown(label="output text")
 
 
576
  gr.Examples([["English","sample_input.mp3"]],inputs=[input_language,audio_input])
577
  with gr.Accordion("image identification",open=True):
578
  image_input = gr.Image(label="upload image")
579
  image_output = gr.Markdown(label="output text")
 
 
580
  gr.Examples(["sick person.jpeg"],inputs=[image_input])
581
  with gr.Accordion("text summarization",open=True):
582
  text_input = gr.Textbox(label="input text",lines=5)
 
594
  ["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
595
  ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
596
  ],inputs=[text_input])
 
 
 
 
 
 
 
 
 
 
597
 
598
  iface.queue().launch(show_error=True,debug=True)