Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -72,66 +72,72 @@ def query_vectara(question):
|
|
| 72 |
verify=True,
|
| 73 |
headers=api_key_header
|
| 74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
metadata_value = metadata.get('value', '')
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
|
| 101 |
-
sources_info.append(source_info)
|
| 102 |
-
|
| 103 |
-
return f"Sources:\n{json.dumps(sources_info, indent=2)}"
|
| 104 |
-
else:
|
| 105 |
-
return "No data found in the response."
|
| 106 |
else:
|
| 107 |
-
return
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
markdown_summary = f'**Summary:** {summary_text}\n\n'
|
| 120 |
-
|
| 121 |
-
# Format the sources as a numbered list
|
| 122 |
-
markdown_sources = "\n".join([f"{i+1}. {source}" for i, source in enumerate(sources_text)])
|
| 123 |
-
|
| 124 |
-
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
|
| 125 |
-
else:
|
| 126 |
-
return "No data found in the response."
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
iface = gr.Interface(
|
| 130 |
-
fn=query_vectara,
|
| 131 |
-
inputs=[gr.Textbox(label="Input Text")],
|
| 132 |
-
outputs=[gr.Markdown(label="Output Text")],
|
| 133 |
-
title="Vectara Chatbot",
|
| 134 |
-
description="Ask me anything using the Vectara API!"
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
iface.launch()
|
|
|
|
| 72 |
verify=True,
|
| 73 |
headers=api_key_header
|
| 74 |
)
|
| 75 |
+
|
| 76 |
+
if response.status_code == 200:
|
| 77 |
+
query_data = response.json()
|
| 78 |
+
if query_data:
|
| 79 |
+
sources_info = []
|
| 80 |
+
|
| 81 |
+
# Extract the summary.
|
| 82 |
+
summary = query_data['responseSet'][0]['summary'][0]['text']
|
| 83 |
|
| 84 |
+
# Iterate over all response sets
|
| 85 |
+
for response_set in query_data.get('responseSet', []):
|
| 86 |
+
# Extract sources
|
| 87 |
+
for source in response_set.get('response', [])[:5]: # Limit to top 5 sources.
|
| 88 |
+
source_metadata = source.get('metadata', [])
|
| 89 |
+
source_info = {}
|
| 90 |
+
|
| 91 |
+
for metadata in source_metadata:
|
| 92 |
+
metadata_name = metadata.get('name', '')
|
| 93 |
+
metadata_value = metadata.get('value', '')
|
| 94 |
+
|
| 95 |
+
if metadata_name == 'title':
|
| 96 |
+
source_info['title'] = metadata_value
|
| 97 |
+
elif metadata_name == 'author':
|
| 98 |
+
source_info['author'] = metadata_value
|
| 99 |
+
elif metadata_name == 'pageNumber':
|
| 100 |
+
source_info['page number'] = metadata_value
|
| 101 |
+
|
| 102 |
+
if source_info:
|
| 103 |
+
sources_info.append(source_info)
|
| 104 |
|
| 105 |
+
result = {"summary": summary, "sources": sources_info}
|
| 106 |
+
return f"{json.dumps(result, indent=2)}"
|
| 107 |
+
else:
|
| 108 |
+
return "No data found in the response."
|
| 109 |
+
else:
|
| 110 |
+
return f"Error: {response.status_code}"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def convert_to_markdown(vectara_response_json):
|
| 114 |
+
vectara_response = json.loads(vectara_response_json)
|
| 115 |
+
if vectara_response:
|
| 116 |
+
summary = vectara_response.get('summary', 'No summary available')
|
| 117 |
+
sources_info = vectara_response.get('sources', [])
|
| 118 |
|
| 119 |
+
# Format the summary as Markdown
|
| 120 |
+
markdown_summary = f'**Summary:** {summary}\n\n'
|
|
|
|
| 121 |
|
| 122 |
+
# Format the sources as a numbered list
|
| 123 |
+
markdown_sources = ""
|
| 124 |
+
for i, source_info in enumerate(sources_info):
|
| 125 |
+
author = source_info.get('author', 'Unknown author')
|
| 126 |
+
title = source_info.get('title', 'Unknown title')
|
| 127 |
+
page_number = source_info.get('page number', 'Unknown page number')
|
| 128 |
+
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"
|
| 129 |
|
| 130 |
+
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
else:
|
| 132 |
+
return "No data found in the response."
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
iface = gr.Interface(
|
| 136 |
+
fn=lambda text: convert_to_markdown(query_vectara(text)),
|
| 137 |
+
inputs=[gr.Textbox(label="Input Text")],
|
| 138 |
+
outputs=[gr.Markdown(label="Output Text")],
|
| 139 |
+
title="Vectara Chatbot",
|
| 140 |
+
description="Ask me anything using the Vectara API!"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|