Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -72,66 +72,72 @@ def query_vectara(question):
|
|
72 |
verify=True,
|
73 |
headers=api_key_header
|
74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
metadata_value = metadata.get('value', '')
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
|
101 |
-
sources_info.append(source_info)
|
102 |
-
|
103 |
-
return f"Sources:\n{json.dumps(sources_info, indent=2)}"
|
104 |
-
else:
|
105 |
-
return "No data found in the response."
|
106 |
else:
|
107 |
-
return
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
markdown_summary = f'**Summary:** {summary_text}\n\n'
|
120 |
-
|
121 |
-
# Format the sources as a numbered list
|
122 |
-
markdown_sources = "\n".join([f"{i+1}. {source}" for i, source in enumerate(sources_text)])
|
123 |
-
|
124 |
-
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
|
125 |
-
else:
|
126 |
-
return "No data found in the response."
|
127 |
-
|
128 |
-
|
129 |
-
iface = gr.Interface(
|
130 |
-
fn=query_vectara,
|
131 |
-
inputs=[gr.Textbox(label="Input Text")],
|
132 |
-
outputs=[gr.Markdown(label="Output Text")],
|
133 |
-
title="Vectara Chatbot",
|
134 |
-
description="Ask me anything using the Vectara API!"
|
135 |
-
)
|
136 |
-
|
137 |
-
iface.launch()
|
|
|
72 |
verify=True,
|
73 |
headers=api_key_header
|
74 |
)
|
75 |
+
|
76 |
+
if response.status_code == 200:
|
77 |
+
query_data = response.json()
|
78 |
+
if query_data:
|
79 |
+
sources_info = []
|
80 |
+
|
81 |
+
# Extract the summary.
|
82 |
+
summary = query_data['responseSet'][0]['summary'][0]['text']
|
83 |
|
84 |
+
# Iterate over all response sets
|
85 |
+
for response_set in query_data.get('responseSet', []):
|
86 |
+
# Extract sources
|
87 |
+
for source in response_set.get('response', [])[:5]: # Limit to top 5 sources.
|
88 |
+
source_metadata = source.get('metadata', [])
|
89 |
+
source_info = {}
|
90 |
+
|
91 |
+
for metadata in source_metadata:
|
92 |
+
metadata_name = metadata.get('name', '')
|
93 |
+
metadata_value = metadata.get('value', '')
|
94 |
+
|
95 |
+
if metadata_name == 'title':
|
96 |
+
source_info['title'] = metadata_value
|
97 |
+
elif metadata_name == 'author':
|
98 |
+
source_info['author'] = metadata_value
|
99 |
+
elif metadata_name == 'pageNumber':
|
100 |
+
source_info['page number'] = metadata_value
|
101 |
+
|
102 |
+
if source_info:
|
103 |
+
sources_info.append(source_info)
|
104 |
|
105 |
+
result = {"summary": summary, "sources": sources_info}
|
106 |
+
return f"{json.dumps(result, indent=2)}"
|
107 |
+
else:
|
108 |
+
return "No data found in the response."
|
109 |
+
else:
|
110 |
+
return f"Error: {response.status_code}"
|
111 |
+
|
112 |
+
|
113 |
+
def convert_to_markdown(vectara_response_json):
|
114 |
+
vectara_response = json.loads(vectara_response_json)
|
115 |
+
if vectara_response:
|
116 |
+
summary = vectara_response.get('summary', 'No summary available')
|
117 |
+
sources_info = vectara_response.get('sources', [])
|
118 |
|
119 |
+
# Format the summary as Markdown
|
120 |
+
markdown_summary = f'**Summary:** {summary}\n\n'
|
|
|
121 |
|
122 |
+
# Format the sources as a numbered list
|
123 |
+
markdown_sources = ""
|
124 |
+
for i, source_info in enumerate(sources_info):
|
125 |
+
author = source_info.get('author', 'Unknown author')
|
126 |
+
title = source_info.get('title', 'Unknown title')
|
127 |
+
page_number = source_info.get('page number', 'Unknown page number')
|
128 |
+
markdown_sources += f"{i+1}. {title} by {author}, Page {page_number}\n"
|
129 |
|
130 |
+
return f"{markdown_summary}**Sources:**\n{markdown_sources}"
|
|
|
|
|
|
|
|
|
|
|
131 |
else:
|
132 |
+
return "No data found in the response."
|
133 |
+
|
134 |
+
|
135 |
+
iface = gr.Interface(
|
136 |
+
fn=lambda text: convert_to_markdown(query_vectara(text)),
|
137 |
+
inputs=[gr.Textbox(label="Input Text")],
|
138 |
+
outputs=[gr.Markdown(label="Output Text")],
|
139 |
+
title="Vectara Chatbot",
|
140 |
+
description="Ask me anything using the Vectara API!"
|
141 |
+
)
|
142 |
+
|
143 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|