--- title: VoxFactory emoji: 🌬️ colorFrom: gray colorTo: red sdk: gradio app_file: interface.py pinned: false license: mit short_description: FinetuneASR Voxtral --- # Finetune Voxtral for ASR with Transformers 🤗 This repository fine-tunes the Voxtral speech model for automatic speech recognition (ASR) using Hugging Face `transformers` and `datasets`. It includes: - Full and LoRA training scripts - A Gradio interface to collect audio, build a JSONL dataset, fine-tune, push to Hub, and deploy a demo Space - Utilities to push trained models and datasets to the Hugging Face Hub ## Installation ### 1) Clone the repository ```bash git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git cd Finetune-Voxtral-ASR ``` ### 2) Create environment and install deps Choose your package manager.
📦 Using UV (recommended) ```bash uv venv .venv --python 3.10 && source .venv/bin/activate uv pip install -r requirements.txt ```
🐍 Using pip ```bash python -m venv .venv --python 3.10 && source .venv/bin/activate pip install --upgrade pip pip install -r requirements.txt ```
## Quick start options - Train from CLI: run `scripts/train.py` (full) or `scripts/train_lora.py` (LoRA) - Use the Gradio interface: `python interface.py` to record/upload audio, create dataset JSONL, train, push, and deploy a demo Space ## Dataset preparation Training scripts accept either a local JSONL or a small Hub dataset slice. - Local JSONL format expected by collators and push utilities: ```python { "audio_path": "/abs/or/relative/path.wav", "text": "reference transcription" } ``` - When loading from the Hub (default fallback): `hf-audio/esb-datasets-test-only-sorted` config `voxpopuli` is used and cast to `Audio(sampling_rate=16000)`. - The custom `VoxtralDataCollator` constructs inputs as: prompt from audio via `VoxtralProcessor.apply_transcription_request(...)` followed by label tokens. Loss is masked over the prompt; only transcription tokens contribute to loss. Minimum columns after loading/mapping: - `audio` cast to `Audio(sampling_rate=16000)` (Hub) or created from `audio_path` (local JSONL) - `text` transcription string ## Full fine-tuning (scripts/train.py) Run with either a local JSONL or the default tiny Hub slice: ```bash python scripts/train.py \ --model-checkpoint mistralai/Voxtral-Mini-3B-2507 \ --dataset-jsonl datasets/voxtral_user/data.jsonl \ --train-count 100 --eval-count 50 \ --batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \ --output-dir ./voxtral-finetuned ``` Key args: - `--dataset-jsonl`: local JSONL with `{audio_path, text}`. If omitted, uses `hf-audio/esb-datasets-test-only-sorted`/`voxpopuli` test slice - `--dataset-name`, `--dataset-config`: override default Hub dataset - `--train-count`, `--eval-count`: small sample sizes for quick runs - `--trackio-space`: HF Space ID for Trackio logging; if omitted and `HF_TOKEN` is set, a space name is auto-derived - `--push-dataset`, `--dataset-repo`: optionally push your local JSONL dataset to the Hub after training Environment for logging and Hub auth: - `HF_TOKEN` or `HUGGINGFACE_HUB_TOKEN`: enables Trackio space naming and Hub uploads Outputs: model and processor saved to `--output-dir`. ## LoRA fine-tuning (scripts/train_lora.py) ```bash python scripts/train_lora.py \ --model-checkpoint mistralai/Voxtral-Mini-3B-2507 \ --dataset-jsonl datasets/voxtral_user/data.jsonl \ --train-count 100 --eval-count 50 \ --batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \ --lora-r 8 --lora-alpha 32 --lora-dropout 0.0 --freeze-audio-tower \ --output-dir ./voxtral-finetuned-lora ``` Additional LoRA args: - `--lora-r`, `--lora-alpha`, `--lora-dropout` - `--freeze-audio-tower`: optionally freeze audio encoder params ## End-to-end via Gradio interface (interface.py) Start the UI: ```bash python interface.py ``` What it does: - Record microphone audio or upload files + transcripts - Saves datasets to `datasets/voxtral_user/` as `data.jsonl` or `recorded_data.jsonl` - Kicks off full or LoRA training with streamed logs - Optionally pushes dataset and model to the Hub - Optionally deploys a Voxtral ASR demo Space Environment variables used by the interface: - `HF_WRITE_TOKEN` or `HF_TOKEN` or `HUGGINGFACE_HUB_TOKEN`: write/read token for Hub actions - `HF_READ_TOKEN`: optional read token - `HF_USERNAME`: fallback username if it cannot be derived from the token Notes: - The interface uses a multilingual phrase source (CohereLabs/AYA via token; otherwise localized fallbacks) - Output models are placed under `outputs//` ## Push models and datasets to Hugging Face (scripts/push_to_huggingface.py) Push a trained model directory (full or LoRA): ```bash python scripts/push_to_huggingface.py model ./voxtral-finetuned my-voxtral-asr \ --author-name "Your Name" \ --model-description "Fine-tuned Voxtral ASR" \ --model-name mistralai/Voxtral-Mini-3B-2507 ``` Push a dataset JSONL and its audio files: ```bash python scripts/push_to_huggingface.py dataset datasets/voxtral_user/data.jsonl my-voxtral-dataset ``` Tips: - If you pass bare repo names (no `username/`), the tool will resolve your username from the token or `HF_USERNAME`. - For LoRA outputs, the pusher detects adapter files; for full models it detects `config.json` + weight files and uploads accordingly. ## Deploy a demo Space (scripts/deploy_demo_space.py) Deploy a Voxtral demo Space for a pushed model: ```bash python scripts/deploy_demo_space.py \ --hf-token $HF_TOKEN \ --hf-username your-hf-username \ --model-id your-hf-username/your-model-repo \ --demo-type voxtral \ --space-name my-voxtral-demo ``` What it does: - Creates the Space (or use `--skip-creation` to only upload) - Uploads template files from `templates/spaces/demo_voxtral/` - Sets space variables and secrets (e.g., `HF_TOKEN`, `HF_MODEL_ID`) via API - Waits for the Space to build and tests accessibility The Space app loads either a full model or a base+LoRA adapter with `peft`, and uses `AutoProcessor` to build Voxtral transcription requests. ## GPU and versions - Torch 2.8.0 + torchaudio 2.8.0 and `torchcodec==0.7` are specified; CUDA-capable GPU is recommended for training - The code prefers `bfloat16` on CUDA, `float32` on CPU ## Troubleshooting - No token found: - Set `HF_TOKEN` (or `HUGGINGFACE_HUB_TOKEN`) in your environment for Hub operations and Trackio naming - Invalid token or username resolution failed: - Provide fully-qualified repo IDs like `username/repo` or set `HF_USERNAME` - Demo Space rate limits / propagation delays: - The deploy script retries uploads and may need extra time for the Space to build - Collator errors: - Ensure your JSONL rows include valid `audio_path` files and `text` strings - Windows shell hints: - Use `set HF_TOKEN=your_token` in CMD/PowerShell before running scripts ## License MIT