Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,519 Bytes
05b47fe 2117a29 c7be47a 2117a29 05b47fe d936359 05b47fe c7be47a 05b47fe 2117a29 c7be47a 2117a29 05b47fe 2117a29 05b47fe b645ccb 39cd40f b645ccb 6d82e2e 64b21d0 6d82e2e b645ccb 6d82e2e 64b21d0 6d82e2e 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f 64b21d0 39cd40f d936359 39cd40f 64b21d0 b645ccb 64b21d0 6d82e2e 64b21d0 05b47fe 2a6a687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
import torch
from threading import Thread
import gradio as gr
import spaces
import re
import logging
import os
from peft import PeftModel
# ----------------------------------------------------------------------
# Environment Variables Configuration
# ----------------------------------------------------------------------
# Get model configuration from environment variables
BASE_MODEL_ID = os.getenv('BASE_MODEL_ID', 'openai/gpt-oss-20b')
LORA_MODEL_ID = os.getenv('LORA_MODEL_ID', os.getenv('HF_MODEL_ID', 'Tonic/gpt-oss-20b-multilingual-reasoner'))
MODEL_NAME = os.getenv('MODEL_NAME', 'GPT-OSS Multilingual Reasoner')
MODEL_SUBFOLDER = os.getenv('MODEL_SUBFOLDER', '')
# Optional persona and prompts derived from training config
MODEL_IDENTITY = os.getenv('MODEL_IDENTITY', '')
DEFAULT_SYSTEM_PROMPT = os.getenv('SYSTEM_MESSAGE', MODEL_IDENTITY or 'You are a helpful assistant. Reasoning: medium')
DEFAULT_DEVELOPER_PROMPT = os.getenv('DEVELOPER_MESSAGE', '')
DEFAULT_REASONING_EFFORT = os.getenv('REASONING_EFFORT', 'medium')
# If the LORA_MODEL_ID is the same as BASE_MODEL_ID, this is a merged model, not LoRA
USE_LORA = LORA_MODEL_ID != BASE_MODEL_ID and not LORA_MODEL_ID.startswith(BASE_MODEL_ID)
print(f"🔧 Configuration:")
print(f" Base Model: {BASE_MODEL_ID}")
print(f" Model ID: {LORA_MODEL_ID}")
print(f" Model Name: {MODEL_NAME}")
print(f" Model Subfolder: {MODEL_SUBFOLDER}")
print(f" Use LoRA: {USE_LORA}")
TITLE_MD = f"# 🙋🏻♂️Welcome to 🌟Tonic's ⚕️{MODEL_NAME} Demo !"
DESCRIPTION_MD = f"""
**Model**: `{LORA_MODEL_ID}`
**Base**: `{BASE_MODEL_ID}`
✨ **Enhanced Features:**
- 🧠 **Advanced Reasoning**: Detailed analysis and step-by-step thinking
- 📊 **LaTeX Support**: Mathematical formulas rendered beautifully (use `$` or `$$`)
- 🎯 **Improved Formatting**: Clear separation of reasoning and final responses
- 📝 **Smart Logging**: Better error handling and request tracking
💡 **Usage Tips:**
- Adjust reasoning level in system prompt (e.g., "Reasoning: high")
- Use LaTeX for math: `$E = mc^2$` or `$$\\int x^2 dx$$`
- Wait a couple of seconds initially for model loading
"""
JOIN_US_MD = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [MultiTonic](https://github.com/MultiTonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
# ----------------------------------------------------------------------
# KaTeX delimiter config for Gradio
# ----------------------------------------------------------------------
LATEX_DELIMS = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load the model
try:
if USE_LORA:
# Load base model and LoRA adapter separately
print(f"🔄 Loading base model: {BASE_MODEL_ID}")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
torch_dtype="auto",
device_map="auto",
attn_implementation="kernels-community/vllm-flash-attn3"
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
# Load the LoRA adapter
try:
print(f"🔄 Loading LoRA adapter: {LORA_MODEL_ID}")
if MODEL_SUBFOLDER and MODEL_SUBFOLDER.strip():
model = PeftModel.from_pretrained(base_model, LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER)
else:
model = PeftModel.from_pretrained(base_model, LORA_MODEL_ID)
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
else:
# Load merged/fine-tuned model directly
print(f"🔄 Loading merged model: {LORA_MODEL_ID}")
model_kwargs = {
"torch_dtype": "auto",
"device_map": "auto",
"attn_implementation": "kernels-community/vllm-flash-attn3"
}
if MODEL_SUBFOLDER and MODEL_SUBFOLDER.strip():
model = AutoModelForCausalLM.from_pretrained(LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(LORA_MODEL_ID, subfolder=MODEL_SUBFOLDER)
else:
model = AutoModelForCausalLM.from_pretrained(LORA_MODEL_ID, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(LORA_MODEL_ID)
print("✅ Merged model loaded successfully!")
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
def format_analysis_response(text):
"""Enhanced response formatting with better structure and LaTeX support."""
# Look for analysis section followed by final response
m = re.search(r"analysis(.*?)assistantfinal", text, re.DOTALL | re.IGNORECASE)
if m:
reasoning = m.group(1).strip()
response = text.split("assistantfinal", 1)[-1].strip()
# Clean up the reasoning section
reasoning = re.sub(r'^analysis\s*', '', reasoning, flags=re.IGNORECASE).strip()
# Format with improved structure
formatted = (
f"**🤔 Analysis & Reasoning:**\n\n"
f"*{reasoning}*\n\n"
f"---\n\n"
f"**💬 Final Response:**\n\n{response}"
)
# Ensure LaTeX delimiters are balanced
if formatted.count("$") % 2:
formatted += "$"
return formatted
# Fallback: clean up the text and return as-is
cleaned = re.sub(r'^analysis\s*', '', text, flags=re.IGNORECASE).strip()
if cleaned.count("$") % 2:
cleaned += "$"
return cleaned
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, model_identity, system_prompt, developer_prompt, reasoning_effort, temperature, top_p, top_k, repetition_penalty):
if not input_data.strip():
yield "Please enter a prompt."
return
# Log the request
logging.info(f"[User] {input_data}")
logging.info(f"[System] {system_prompt} | Temp={temperature} | Max tokens={max_new_tokens}")
new_message = {"role": "user", "content": input_data}
# Combine model identity with system prompt for a single system message
combined_parts = []
if model_identity and model_identity.strip():
combined_parts.append(model_identity.strip())
if system_prompt and system_prompt.strip():
combined_parts.append(system_prompt.strip())
if reasoning_effort and isinstance(reasoning_effort, str) and reasoning_effort.strip():
# Append explicit reasoning directive
combined_parts.append(f"Reasoning: {reasoning_effort.strip()}")
combined_system = "\n\n".join(combined_parts).strip()
system_message = ([{"role": "system", "content": combined_system}] if combined_system else [])
developer_message = [{"role": "developer", "content": developer_prompt}] if developer_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + developer_message + processed_history + [new_message]
try:
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception:
# Fallback: merge developer prompt into system prompt if template doesn't support 'developer' role
fallback_sys = combined_system
if developer_prompt:
fallback_sys = (fallback_sys + ("\n\n[Developer]\n" if fallback_sys else "[Developer]\n") + developer_prompt).strip()
fallback_messages = ([{"role": "system", "content": fallback_sys}] if fallback_sys else []) + processed_history + [new_message]
prompt = tokenizer.apply_chat_template(
fallback_messages,
tokenize=False,
add_generation_prompt=True
)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input using the chat template
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response with enhanced formatting
collected_text = ""
buffer = ""
yielded_once = False
try:
for chunk in streamer:
if not chunk:
continue
collected_text += chunk
buffer += chunk
# Initial yield to show immediate response
if not yielded_once:
yield chunk
buffer = ""
yielded_once = True
continue
# Yield accumulated text periodically for smooth streaming
if "\n" in buffer or len(buffer) > 150:
# Use enhanced formatting for partial text
partial_formatted = format_analysis_response(collected_text)
yield partial_formatted
buffer = ""
# Final formatting with complete text
final_formatted = format_analysis_response(collected_text)
yield final_formatted
except Exception as e:
logging.exception("Generation streaming failed")
yield f"❌ Error during generation: {e}"
APP_CSS = """
#main_chatbot {height: calc(100vh - 120px);} /* Increase chatbot viewport height */
.gradio-container {min-height: 100vh;}
"""
# Build a single ChatInterface (no outer Blocks) to avoid layout conflicts
description_html = f"""
<div style=\"display:flex; gap: 16px; align-items:flex-start; flex-wrap: wrap\">
<div style=\"flex: 1 1 60%; min-width: 300px;\">
{DESCRIPTION_MD}
</div>
<div style=\"flex: 1 1 35%; min-width: 260px;\">
{JOIN_US_MD}
</div>
</div>
"""
custom_chatbot = gr.Chatbot(label="Chatbot", elem_id="main_chatbot", latex_delimiters=LATEX_DELIMS)
demo = gr.ChatInterface(
fn=generate_response,
chatbot=custom_chatbot,
title=f"🙋🏻♂️ Welcome to 🌟Tonic's ⚕️{MODEL_NAME} Demo !",
description=description_html,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="🪪Model Identity",
value=MODEL_IDENTITY,
lines=1,
placeholder="Optional identity/persona for the model"
),
gr.Textbox(
label="🤖System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=1,
placeholder="Change system prompt"
),
gr.Textbox(
label="👨🏻💻Developer Prompt",
value=DEFAULT_DEVELOPER_PROMPT,
lines=1,
placeholder="Optional developer instructions"
),
gr.Dropdown(
label="🧠Reasoning Effort",
choices=["low", "medium", "high"],
value=DEFAULT_REASONING_EFFORT,
interactive=True,
),
gr.Slider(label="🌡️Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="↗️Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="🔝Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="🦜Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0),
],
additional_inputs_accordion=gr.Accordion(label="🔧Advanced Inputs", open=False),
examples=[
[{"text": "A 68-year-old man complains of several blisters arising over the back and trunk for the preceding 2 weeks. He takes no medications and has not noted systemic symptoms such as fever, sore throat, weight loss, or fatigue. The general physical examination is normal. The oral mucosa and the lips are normal. Several 2- to 3-cm bullae are present over the trunk and back. A few excoriations where the blisters have ruptured are present. The remainder of the skin is normal, without erythema or scale. What is the best diagnostic approach at this time?"}],
[{"text": "A 28-year-old woman, gravida 2, para 1, at 40 weeks of gestation is admitted to the hospital in active labor. The patient has attended many prenatal appointments and followed her physician's advice about screening for diseases, laboratory testing, diet, and exercise. Her pregnancy has been uncomplicated. She has no history of a serious illness. Her first child was delivered via normal vaginal delivery. Her vital signs are within normal limits. Cervical examination shows 100% effacement and 10 cm dilation. A cardiotocograph is shown. Which of the following is the most appropriate initial step in management?"}],
[{"text": "An 18-year-old woman has eaten homemade preserves. Eighteen hours later, she develops diplopia, dysarthria, and dysphagia. She presents to the emergency room for assessment and on examination her blood pressure is 112/74 mmHg, heart rate 110/min, and respirations 20/min. The pertinent findings are abnormal extraocular movements due to cranial nerve palsies, difficulty swallowing and a change in her voice. The strength in her arms is 4/5 and 5/5 in her legs, and the reflexes are normal. Which of the following is the most likely causative organism?"}],
[{"text": "What are you & who made you?"}],
],
cache_examples=False,
type="messages",
fill_height=True,
fill_width=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt (supports LaTeX: $x^2 + y^2 = z^2$)"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft(),
css=APP_CSS,
)
if __name__ == "__main__":
demo.launch(mcp_server=True, share=True) |