Spaces:
Running
on
Zero
Running
on
Zero
adds market status , better uncertainty pred, extends pred to technicals , improves ensemble method , adds covariants for better pred , improves gradio interface docstrings
Browse files- README.md +243 -186
- app.py +0 -0
- requirements.txt +39 -59
README.md
CHANGED
@@ -13,207 +13,264 @@ tags:
|
|
13 |
- mcp-server-track
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
|
18 |
-
A comprehensive stock prediction and analysis
|
19 |
|
20 |
-
## Features
|
21 |
|
22 |
### Core Prediction Engine
|
23 |
-
- **Chronos
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
- **
|
32 |
-
- **
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
-
|
37 |
-
-
|
38 |
-
-
|
39 |
-
|
40 |
-
|
41 |
-
-
|
42 |
-
- **
|
43 |
-
- **
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
- **
|
48 |
-
- **
|
49 |
-
- **
|
50 |
-
|
51 |
-
|
52 |
-
- **
|
53 |
-
- **
|
54 |
-
- **
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
```bash
|
60 |
pip install -r requirements.txt
|
61 |
```
|
62 |
|
63 |
-
2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
```bash
|
65 |
python app.py
|
66 |
```
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
3. Choose prediction strategy (Chronos or Technical)
|
74 |
-
4. Set prediction days and lookback period
|
75 |
-
5. Click "Analyze Stock"
|
76 |
|
77 |
### Advanced Settings
|
78 |
-
- **Ensemble Methods**: Enable/disable multi-
|
79 |
-
- **Regime Detection**: Enable/disable market regime
|
80 |
- **Stress Testing**: Enable/disable scenario analysis
|
81 |
-
- **
|
82 |
-
- **
|
83 |
-
- **
|
84 |
-
|
85 |
-
###
|
86 |
-
|
87 |
-
|
88 |
-
- **
|
89 |
-
- **
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
### Regime Detection
|
103 |
-
|
104 |
-
-
|
105 |
-
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
- **
|
111 |
-
|
112 |
-
|
113 |
-
- **
|
114 |
-
|
115 |
-
|
116 |
-
- **
|
117 |
-
- **
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
-
|
130 |
-
-
|
131 |
-
|
132 |
-
|
133 |
-
-
|
134 |
-
|
135 |
-
|
136 |
-
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
- Implement dynamic delta hedging based on predictions
|
205 |
-
- Monitor risk metrics daily using the application
|
206 |
-
|
207 |
-
6. **Risk Management**
|
208 |
-
- Use the application's volatility predictions for dynamic hedging
|
209 |
-
- Monitor technical indicators for early warning signals
|
210 |
-
- Set up automated alerts for barrier proximity
|
211 |
-
- Regular rebalancing based on prediction updates
|
212 |
-
|
213 |
-
### Key Success Factors
|
214 |
-
- Regular monitoring of prediction accuracy
|
215 |
-
- Dynamic adjustment of hedging strategy
|
216 |
-
- Clear communication of product risks to clients
|
217 |
-
- Proper documentation of all assumptions and methodologies
|
218 |
-
|
219 |
-
This example demonstrates how the application can be used to create profitable structured products while managing risk effectively. The bank can use this framework to create similar products with different underlying assets, terms, and yield targets.
|
|
|
13 |
- mcp-server-track
|
14 |
---
|
15 |
|
16 |
+
# Enhanced Stock Prediction System with Amazon Chronos
|
17 |
|
18 |
+
A comprehensive stock prediction and analysis system that leverages Amazon's Chronos foundation model for time series forecasting, enhanced with advanced covariate data, sentiment analysis, and sophisticated uncertainty calculations.
|
19 |
|
20 |
+
## 🚀 Key Features
|
21 |
|
22 |
### Core Prediction Engine
|
23 |
+
- **Amazon Chronos Integration**: Uses the state-of-the-art Chronos T5 foundation model for probabilistic time series forecasting
|
24 |
+
- **Multi-Timeframe Analysis**: Support for daily, hourly, and 15-minute timeframes
|
25 |
+
- **Advanced Ensemble Methods**: Combines multiple algorithms including Random Forest, Gradient Boosting, SVR, and Neural Networks
|
26 |
+
|
27 |
+
### Enhanced Covariate Data
|
28 |
+
- **Market Indices**: S&P 500, Dow Jones, NASDAQ, VIX, Treasury yields
|
29 |
+
- **Sector ETFs**: Financial, Technology, Energy, Healthcare, and more
|
30 |
+
- **Commodities**: Gold, Silver, Oil, Natural Gas, Corn, Soybeans
|
31 |
+
- **Currencies**: EUR/USD, GBP/USD, JPY/USD, CHF/USD, CAD/USD
|
32 |
+
- **Economic Indicators**: Inflation proxies, volatility indices, dollar strength
|
33 |
+
|
34 |
+
### Advanced Uncertainty Calculations
|
35 |
+
- **Multiple Uncertainty Methods**:
|
36 |
+
- Basic quantile-based uncertainty
|
37 |
+
- Skewness-adjusted uncertainty
|
38 |
+
- Volatility-scaled uncertainty
|
39 |
+
- Market condition adjusted uncertainty
|
40 |
+
- Time-decay uncertainty
|
41 |
+
- Ensemble uncertainty (combines all methods)
|
42 |
+
- **Regime-Aware Uncertainty**: Adjusts uncertainty based on market regime detection
|
43 |
+
- **Confidence Intervals**: 95% confidence bands with multiple calculation methods
|
44 |
+
|
45 |
+
### Enhanced Volume Prediction
|
46 |
+
- **Price-Volume Relationship Modeling**: Analyzes the relationship between price movements and volume
|
47 |
+
- **Volume Momentum**: Incorporates volume momentum and trends
|
48 |
+
- **Market Condition Adjustments**: Adjusts volume predictions based on market volatility
|
49 |
+
- **Uncertainty Quantification**: Provides volume prediction uncertainty estimates
|
50 |
+
|
51 |
+
### Sentiment Analysis
|
52 |
+
- **News Sentiment Scoring**: Analyzes news articles for sentiment polarity
|
53 |
+
- **Confidence Levels**: Provides confidence scores for sentiment analysis
|
54 |
+
- **Real-time Integration**: Incorporates sentiment data into prediction models
|
55 |
+
|
56 |
+
### Market Regime Detection
|
57 |
+
- **Hidden Markov Models**: Detects bull, bear, and sideways market regimes
|
58 |
+
- **Volatility Clustering**: Identifies periods of high and low volatility
|
59 |
+
- **Regime-Aware Predictions**: Adjusts predictions based on current market regime
|
60 |
+
|
61 |
+
### Advanced Algorithms
|
62 |
+
- **Multi-Algorithm Ensemble**:
|
63 |
+
- Random Forest Regressor
|
64 |
+
- Gradient Boosting Regressor
|
65 |
+
- Ridge Regression
|
66 |
+
- Lasso Regression
|
67 |
+
- Support Vector Regression (SVR)
|
68 |
+
- Multi-Layer Perceptron (MLP)
|
69 |
+
- **Time Series Cross-Validation**: Uses expanding window validation for robust model evaluation
|
70 |
+
- **Weighted Ensemble**: Combines predictions using uncertainty-weighted averaging
|
71 |
+
|
72 |
+
### Financial Smoothing
|
73 |
+
- **Multiple Smoothing Methods**:
|
74 |
+
- Exponential smoothing (trend following)
|
75 |
+
- Moving average (noise reduction)
|
76 |
+
- Kalman filter (adaptive smoothing)
|
77 |
+
- Savitzky-Golay (preserves peaks/valleys)
|
78 |
+
- Double exponential (trend + level)
|
79 |
+
- Triple exponential (complex patterns)
|
80 |
+
- Adaptive smoothing (volatility-based)
|
81 |
+
|
82 |
+
## 📊 Technical Indicators
|
83 |
+
|
84 |
+
### Price-Based Indicators
|
85 |
+
- **RSI (Relative Strength Index)**: Momentum oscillator with regime-adjusted thresholds
|
86 |
+
- **MACD (Moving Average Convergence Divergence)**: Trend-following momentum indicator
|
87 |
+
- **Bollinger Bands**: Volatility indicator with position analysis
|
88 |
+
- **Moving Averages**: SMA 20, SMA 50 with crossover analysis
|
89 |
+
|
90 |
+
### Volume-Based Indicators
|
91 |
+
- **Volume-Price Trend**: Analyzes the relationship between volume and price movements
|
92 |
+
- **Volume Momentum**: Tracks volume changes over time
|
93 |
+
- **Volume Volatility**: Measures volume stability
|
94 |
+
- **Volume Ratio**: Compares current volume to historical averages
|
95 |
+
|
96 |
+
### Risk Metrics
|
97 |
+
- **Sharpe Ratio**: Risk-adjusted return measure
|
98 |
+
- **Value at Risk (VaR)**: Maximum expected loss at given confidence level
|
99 |
+
- **Maximum Drawdown**: Largest peak-to-trough decline
|
100 |
+
- **Beta**: Market correlation measure
|
101 |
+
- **Volatility**: Historical and implied volatility measures
|
102 |
+
|
103 |
+
## 🛠️ Installation
|
104 |
+
|
105 |
+
1. **Install Dependencies**:
|
106 |
```bash
|
107 |
pip install -r requirements.txt
|
108 |
```
|
109 |
|
110 |
+
2. **Key Dependencies**:
|
111 |
+
- `chronos-forecasting>=1.0.0`: Amazon's Chronos foundation model
|
112 |
+
- `torch>=2.1.2`: PyTorch for deep learning
|
113 |
+
- `yfinance>=0.2.0`: Yahoo Finance data
|
114 |
+
- `scikit-learn>=1.3.0`: Machine learning algorithms
|
115 |
+
- `plotly>=5.0.0`: Interactive visualizations
|
116 |
+
- `gradio>=4.0.0`: Web interface
|
117 |
+
- `textblob>=0.17.1`: Sentiment analysis
|
118 |
+
- `arch>=6.2.0`: GARCH modeling
|
119 |
+
- `hmmlearn>=0.3.0`: Hidden Markov Models
|
120 |
+
|
121 |
+
## 🚀 Usage
|
122 |
+
|
123 |
+
### Web Interface
|
124 |
```bash
|
125 |
python app.py
|
126 |
```
|
127 |
|
128 |
+
The application provides a comprehensive web interface with three main tabs:
|
129 |
|
130 |
+
1. **Daily Analysis**: Long-term investment analysis (up to 365 days)
|
131 |
+
2. **Hourly Analysis**: Medium-term trading analysis (up to 7 days)
|
132 |
+
3. **15-Minute Analysis**: Short-term scalping analysis (up to 3 days)
|
|
|
|
|
|
|
133 |
|
134 |
### Advanced Settings
|
135 |
+
- **Ensemble Methods**: Enable/disable multi-algorithm ensemble
|
136 |
+
- **Regime Detection**: Enable/disable market regime detection
|
137 |
- **Stress Testing**: Enable/disable scenario analysis
|
138 |
+
- **Enhanced Covariate Data**: Include market indices, sectors, commodities
|
139 |
+
- **Sentiment Analysis**: Include news sentiment analysis
|
140 |
+
- **Smoothing**: Choose from multiple smoothing algorithms
|
141 |
+
|
142 |
+
### Ensemble Weights
|
143 |
+
Configure the weights for different prediction methods:
|
144 |
+
- **Chronos Weight**: Weight for Amazon Chronos predictions
|
145 |
+
- **Technical Weight**: Weight for technical analysis
|
146 |
+
- **Statistical Weight**: Weight for statistical models
|
147 |
+
|
148 |
+
## 📈 Prediction Features
|
149 |
+
|
150 |
+
### Enhanced Uncertainty Quantification
|
151 |
+
The system provides multiple uncertainty calculation methods:
|
152 |
+
|
153 |
+
1. **Basic Uncertainty**: Standard quantile-based uncertainty
|
154 |
+
2. **Skewness-Adjusted**: Accounts for asymmetric return distributions
|
155 |
+
3. **Volatility-Scaled**: Scales uncertainty based on historical volatility
|
156 |
+
4. **Market-Adjusted**: Adjusts uncertainty based on VIX and market conditions
|
157 |
+
5. **Time-Decay**: Uncertainty increases with prediction horizon
|
158 |
+
6. **Ensemble Uncertainty**: Combines all methods for robust estimates
|
159 |
+
|
160 |
+
### Volume Prediction Improvements
|
161 |
+
- **Price-Volume Relationship**: Models the relationship between price movements and volume
|
162 |
+
- **Momentum Effects**: Incorporates volume momentum and trends
|
163 |
+
- **Market Condition Adjustments**: Adjusts predictions based on market volatility
|
164 |
+
- **Uncertainty Quantification**: Provides confidence intervals for volume predictions
|
165 |
+
|
166 |
+
### Covariate Integration
|
167 |
+
The system automatically collects and integrates:
|
168 |
+
- **Market Indices**: S&P 500, Dow Jones, NASDAQ, VIX
|
169 |
+
- **Sector Performance**: Financial, Technology, Energy, Healthcare ETFs
|
170 |
+
- **Economic Indicators**: Treasury yields, dollar index, commodity prices
|
171 |
+
- **Global Markets**: International indices and currencies
|
172 |
+
|
173 |
+
## 🔬 Advanced Features
|
174 |
|
175 |
### Regime Detection
|
176 |
+
Uses Hidden Markov Models to detect market regimes:
|
177 |
+
- **Bull Market**: High returns, low volatility
|
178 |
+
- **Bear Market**: Low returns, high volatility
|
179 |
+
- **Sideways Market**: Low returns, low volatility
|
180 |
+
|
181 |
+
### Stress Testing
|
182 |
+
Performs scenario analysis under various market conditions:
|
183 |
+
- **Market Crash**: -20% market decline
|
184 |
+
- **Volatility Spike**: 50% increase in VIX
|
185 |
+
- **Interest Rate Shock**: 100 basis point rate increase
|
186 |
+
- **Sector Rotation**: Major sector performance shifts
|
187 |
+
|
188 |
+
### Sentiment Analysis
|
189 |
+
- **News Sentiment**: Analyzes recent news articles for sentiment
|
190 |
+
- **Confidence Scoring**: Provides confidence levels for sentiment analysis
|
191 |
+
- **Integration**: Incorporates sentiment into prediction models
|
192 |
+
|
193 |
+
## 📊 Output Metrics
|
194 |
+
|
195 |
+
### Trading Signals
|
196 |
+
- **RSI Signals**: Oversold/Overbought with confidence levels
|
197 |
+
- **MACD Signals**: Buy/Sell with strength indicators
|
198 |
+
- **Bollinger Bands**: Position within bands with breakout signals
|
199 |
+
- **SMA Signals**: Trend following with crossover analysis
|
200 |
+
|
201 |
+
### Risk Metrics
|
202 |
+
- **Sharpe Ratio**: Risk-adjusted return measure
|
203 |
+
- **VaR**: Value at Risk at 95% confidence
|
204 |
+
- **Maximum Drawdown**: Largest historical decline
|
205 |
+
- **Beta**: Market correlation coefficient
|
206 |
+
- **Volatility**: Historical and implied volatility
|
207 |
+
|
208 |
+
### Enhanced Features
|
209 |
+
- **Covariate Data Usage**: Indicates which external data was used
|
210 |
+
- **Sentiment Analysis**: News sentiment scores and confidence
|
211 |
+
- **Advanced Uncertainty Methods**: List of uncertainty calculation methods used
|
212 |
+
- **Regime-Aware Uncertainty**: Whether regime detection was applied
|
213 |
+
- **Enhanced Volume Prediction**: Whether advanced volume modeling was used
|
214 |
+
|
215 |
+
## 🎯 Use Cases
|
216 |
+
|
217 |
+
### Long-Term Investment (Daily Analysis)
|
218 |
+
- Portfolio management and asset allocation
|
219 |
+
- Strategic investment decisions
|
220 |
+
- Risk management and hedging
|
221 |
+
- Sector rotation strategies
|
222 |
+
|
223 |
+
### Medium-Term Trading (Hourly Analysis)
|
224 |
+
- Swing trading strategies
|
225 |
+
- Position sizing and timing
|
226 |
+
- Intraday volatility analysis
|
227 |
+
- Momentum-based trading
|
228 |
+
|
229 |
+
### Short-Term Trading (15-Minute Analysis)
|
230 |
+
- Scalping strategies
|
231 |
+
- High-frequency trading
|
232 |
+
- Micro-pattern recognition
|
233 |
+
- Ultra-short-term momentum
|
234 |
+
|
235 |
+
## 🔧 Configuration
|
236 |
+
|
237 |
+
### Model Parameters
|
238 |
+
- **Chronos Model**: `amazon/chronos-t5-large` (default)
|
239 |
+
- **Context Window**: 64 time steps
|
240 |
+
- **Prediction Length**: Configurable up to model limits
|
241 |
+
- **Quantile Levels**: [0.1, 0.5, 0.9] for uncertainty estimation
|
242 |
+
|
243 |
+
### Data Sources
|
244 |
+
- **Primary**: Yahoo Finance (yfinance)
|
245 |
+
- **Covariates**: Market indices, ETFs, commodities, currencies
|
246 |
+
- **Sentiment**: News articles via yfinance
|
247 |
+
- **Economic Data**: Treasury yields, VIX, dollar index
|
248 |
+
|
249 |
+
## 📝 Notes
|
250 |
+
|
251 |
+
- **Market Hours**: Hourly and 15-minute data only available during market hours
|
252 |
+
- **Data Limitations**: Yahoo Finance has specific limits for intraday data
|
253 |
+
- **Model Performance**: Chronos performs best with sufficient historical data
|
254 |
+
- **Uncertainty**: All predictions include comprehensive uncertainty estimates
|
255 |
+
- **Ensemble Weights**: Should sum to 1.0 for optimal performance
|
256 |
+
|
257 |
+
## 🤝 Contributing
|
258 |
+
|
259 |
+
This system is designed to be extensible. Key areas for enhancement:
|
260 |
+
- Additional covariate data sources
|
261 |
+
- New uncertainty calculation methods
|
262 |
+
- Advanced sentiment analysis techniques
|
263 |
+
- Custom technical indicators
|
264 |
+
- Alternative ensemble methods
|
265 |
+
|
266 |
+
## 📄 License
|
267 |
+
|
268 |
+
This project is licensed under the Apache-2.0 License.
|
269 |
+
|
270 |
+
## 🙏 Acknowledgments
|
271 |
+
|
272 |
+
- **Amazon Chronos**: Foundation model for time series forecasting
|
273 |
+
- **Yahoo Finance**: Market data provider
|
274 |
+
- **Gradio**: Web interface framework
|
275 |
+
- **Plotly**: Interactive visualizations
|
276 |
+
- **Scikit-learn**: Machine learning algorithms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,36 +1,52 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
torch>=2.1.2
|
|
|
|
|
|
|
|
|
5 |
pandas>=2.0.0
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
matplotlib
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
retry>=0.9.2
|
10 |
-
hyperopt
|
11 |
-
alpaca-trade-api>=3.0.0
|
12 |
-
SQLAlchemy
|
13 |
-
websocket-client
|
14 |
-
py
|
15 |
-
future
|
16 |
-
Pillow
|
17 |
-
ipython
|
18 |
-
pbr
|
19 |
-
setuptools
|
20 |
-
six
|
21 |
-
wheel
|
22 |
-
pip
|
23 |
tqdm
|
24 |
-
|
25 |
-
|
26 |
-
transformers>=4.36.0
|
27 |
-
click
|
28 |
requests>=2.31.0
|
29 |
joblib
|
30 |
aiohttp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
tensorboard
|
32 |
msgpack
|
33 |
-
urllib3
|
34 |
rsa
|
35 |
pyasn1
|
36 |
attrs
|
@@ -44,7 +60,6 @@ jedi
|
|
44 |
lxml
|
45 |
Mako
|
46 |
MarkupSafe
|
47 |
-
pytz>=2023.3
|
48 |
toml
|
49 |
idna
|
50 |
multidict
|
@@ -52,48 +67,13 @@ cliff
|
|
52 |
stevedore
|
53 |
autopage
|
54 |
prettytable
|
55 |
-
certifi
|
56 |
patsy
|
57 |
-
regex
|
58 |
-
cachetools>=5.3.0
|
59 |
-
python-dateutil>=2.8.2
|
60 |
-
cmaes
|
61 |
-
alembic
|
62 |
-
colorlog
|
63 |
-
traitlets
|
64 |
-
decorator
|
65 |
-
backcall
|
66 |
-
pickleshare
|
67 |
-
pluggy
|
68 |
-
iniconfig
|
69 |
-
yarl
|
70 |
-
chardet
|
71 |
-
threadpoolctl
|
72 |
-
greenlet
|
73 |
-
Markdown
|
74 |
-
oauthlib
|
75 |
-
Werkzeug
|
76 |
-
fonttools
|
77 |
-
pyparsing
|
78 |
-
websockets
|
79 |
-
statsmodels
|
80 |
tokenizers
|
81 |
-
alpaca-py>=0.8.0
|
82 |
fastapi
|
83 |
gunicorn
|
84 |
uvicorn
|
85 |
spaces>=0.1.0
|
86 |
-
numpy>=1.24.0
|
87 |
-
yfinance>=0.2.0
|
88 |
-
plotly>=5.0.0
|
89 |
-
scikit-learn>=1.0.0
|
90 |
python-binance
|
91 |
typer
|
92 |
diskcache
|
93 |
-
anthropic
|
94 |
-
gradio>=4.0.0
|
95 |
-
chronos-forecasting>=1.0.0
|
96 |
-
|
97 |
-
# Advanced features dependencies
|
98 |
-
hmmlearn>=0.3.0
|
99 |
-
scipy>=1.10.0
|
|
|
1 |
+
# Core dependencies with version constraints to avoid conflicts
|
2 |
+
numpy<2.0.0
|
3 |
+
scipy>=1.10.0
|
4 |
+
scikit-learn>=1.3.0
|
5 |
|
6 |
+
# Deep learning and ML
|
7 |
torch>=2.1.2
|
8 |
+
transformers>=4.36.0
|
9 |
+
chronos-forecasting>=1.0.0
|
10 |
+
|
11 |
+
# Data handling
|
12 |
pandas>=2.0.0
|
13 |
+
pandas_datareader>=0.10.0
|
14 |
+
yfinance>=0.2.0
|
15 |
+
|
16 |
+
# Visualization
|
17 |
+
plotly>=5.0.0
|
18 |
matplotlib
|
19 |
+
|
20 |
+
# Web interface
|
21 |
+
gradio>=4.0.0
|
22 |
+
|
23 |
+
# Advanced features
|
24 |
+
hmmlearn>=0.3.0
|
25 |
+
textblob>=0.17.1
|
26 |
+
arch>=6.2.0
|
27 |
+
|
28 |
+
# Utilities
|
29 |
+
loguru>=0.7.0
|
30 |
retry>=0.9.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
tqdm
|
32 |
+
pytz>=2023.3
|
33 |
+
python-dateutil>=2.8.2
|
|
|
|
|
34 |
requests>=2.31.0
|
35 |
joblib
|
36 |
aiohttp
|
37 |
+
urllib3
|
38 |
+
certifi
|
39 |
+
regex
|
40 |
+
cachetools>=5.3.0
|
41 |
+
|
42 |
+
# Optional dependencies
|
43 |
+
neuralforecast
|
44 |
+
hyperopt
|
45 |
+
optuna
|
46 |
+
filelock
|
47 |
+
click
|
48 |
tensorboard
|
49 |
msgpack
|
|
|
50 |
rsa
|
51 |
pyasn1
|
52 |
attrs
|
|
|
60 |
lxml
|
61 |
Mako
|
62 |
MarkupSafe
|
|
|
63 |
toml
|
64 |
idna
|
65 |
multidict
|
|
|
67 |
stevedore
|
68 |
autopage
|
69 |
prettytable
|
|
|
70 |
patsy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
tokenizers
|
|
|
72 |
fastapi
|
73 |
gunicorn
|
74 |
uvicorn
|
75 |
spaces>=0.1.0
|
|
|
|
|
|
|
|
|
76 |
python-binance
|
77 |
typer
|
78 |
diskcache
|
79 |
+
anthropic
|
|
|
|
|
|
|
|
|
|
|
|