Tonic commited on
Commit
55ce26a
·
unverified ·
1 Parent(s): 542229d

adds market status , better uncertainty pred, extends pred to technicals , improves ensemble method , adds covariants for better pred , improves gradio interface docstrings

Browse files
Files changed (3) hide show
  1. README.md +243 -186
  2. app.py +0 -0
  3. requirements.txt +39 -59
README.md CHANGED
@@ -13,207 +13,264 @@ tags:
13
  - mcp-server-track
14
  ---
15
 
16
- # Advanced Stock Prediction Analysis
17
 
18
- A comprehensive stock prediction and analysis tool that combines Chronos forecasting with advanced features including regime detection, ensemble methods, and stress testing.
19
 
20
- ## Features
21
 
22
  ### Core Prediction Engine
23
- - **Chronos Forecasting**: State-of-the-art time series forecasting using Amazon's Chronos model
24
- - **Technical Analysis**: Traditional technical indicators (RSI, MACD, Bollinger Bands, SMA)
25
- - **Multi-timeframe Support**: Daily, hourly, and 15-minute analysis
26
- - **Real-time Data**: Live market data via yfinance
27
-
28
- ### Advanced Features
29
-
30
- #### 1. Market Regime Detection
31
- - **Hidden Markov Models (HMM)**: Automatic detection of market regimes (bull, bear, sideways)
32
- - **Volatility-based Fallback**: Simplified regime detection when HMM is unavailable
33
- - **Regime-adjusted Signals**: Trading signals that adapt to current market conditions
34
-
35
- #### 2. Ensemble Methods
36
- - **Multi-model Combination**: Combines Chronos, technical, and statistical predictions
37
- - **Adaptive Weighting**: User-configurable weights for different models
38
- - **Uncertainty Quantification**: Advanced uncertainty estimation with skewness adjustment
39
-
40
- #### 3. Advanced Risk Metrics
41
- - **Tail Risk Analysis**: VaR and CVaR calculations
42
- - **Market Correlation**: Beta, alpha, and correlation with market indices
43
- - **Risk-adjusted Returns**: Sharpe, Sortino, and Calmar ratios
44
- - **Drawdown Analysis**: Maximum drawdown and recovery metrics
45
-
46
- #### 4. Stress Testing
47
- - **Scenario Analysis**: Market crash, high volatility, bull market scenarios
48
- - **Interest Rate Shocks**: Impact of rate changes on predictions
49
- - **Custom Scenarios**: User-defined stress test parameters
50
-
51
- #### 5. Enhanced Uncertainty Quantification
52
- - **Skewness-aware**: Accounts for non-normal return distributions
53
- - **Adaptive Smoothing**: Reduces prediction drift based on uncertainty
54
- - **Confidence Intervals**: Dynamic confidence levels based on market conditions
55
-
56
- ## Installation
57
-
58
- 1. Install dependencies:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ```bash
60
  pip install -r requirements.txt
61
  ```
62
 
63
- 2. Run the application:
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ```bash
65
  python app.py
66
  ```
67
 
68
- ## Usage
69
 
70
- ### Basic Analysis
71
- 1. Enter a stock symbol (e.g., AAPL, MSFT, GOOGL)
72
- 2. Select timeframe (Daily, Hourly, or 15-minute)
73
- 3. Choose prediction strategy (Chronos or Technical)
74
- 4. Set prediction days and lookback period
75
- 5. Click "Analyze Stock"
76
 
77
  ### Advanced Settings
78
- - **Ensemble Methods**: Enable/disable multi-model combination
79
- - **Regime Detection**: Enable/disable market regime analysis
80
  - **Stress Testing**: Enable/disable scenario analysis
81
- - **Risk-free Rate**: Set annual risk-free rate for calculations
82
- - **Market Index**: Choose correlation index (S&P 500, Dow Jones, NASDAQ, Russell 2000)
83
- - **Ensemble Weights**: Adjust weights for Chronos, Technical, and Statistical models
84
-
85
- ### Output Sections
86
-
87
- #### Daily Analysis
88
- - **Structured Product Metrics**: Market cap, sector, financial ratios
89
- - **Advanced Risk Analysis**: Comprehensive risk metrics with market correlation
90
- - **Market Regime Analysis**: Current regime and transition probabilities
91
- - **Trading Signals**: Advanced signals with confidence levels
92
- - **Stress Test Results**: Scenario analysis outcomes
93
- - **Ensemble Analysis**: Multi-model combination details
94
-
95
- #### Hourly/15-minute Analysis
96
- - **Intraday Metrics**: High-frequency volatility and momentum indicators
97
- - **Volume Analysis**: Volume-price trends and momentum
98
- - **Real-time Indicators**: Pre/post market data analysis
99
-
100
- ## Technical Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  ### Regime Detection
103
- - Uses Hidden Markov Models with 3 states (low volatility, normal, high volatility)
104
- - Falls back to volatility-based detection if HMM unavailable
105
- - Regime probabilities influence trading signal thresholds
106
-
107
- ### Ensemble Methods
108
- - **Chronos**: Primary deep learning model (60% default weight)
109
- - **Technical**: Traditional indicators with mean reversion (20% default weight)
110
- - **Statistical**: ARIMA-like models with momentum (20% default weight)
111
-
112
- ### Stress Testing Scenarios
113
- - **Market Crash**: 3x volatility, -15% return shock
114
- - **High Volatility**: 2x volatility, -5% return shock
115
- - **Low Volatility**: 0.5x volatility, +2% return shock
116
- - **Bull Market**: 1.2x volatility, +10% return shock
117
- - **Interest Rate Shock**: 1.5x volatility, -8% return shock
118
-
119
- ### Uncertainty Quantification
120
- - Skewness-adjusted confidence intervals
121
- - Adaptive smoothing based on prediction uncertainty
122
- - Time-varying volatility modeling
123
-
124
- ## Dependencies
125
-
126
- ### Core
127
- - `torch>=2.1.2`: PyTorch for deep learning
128
- - `chronos-forecasting>=1.0.0`: Amazon's Chronos model
129
- - `yfinance>=0.2.0`: Yahoo Finance data
130
- - `gradio>=4.0.0`: Web interface
131
-
132
- ### Advanced Features
133
- - `hmmlearn>=0.3.0`: Hidden Markov Models for regime detection
134
- - `scipy>=1.10.0`: Scientific computing and statistics
135
- - `scikit-learn>=1.0.0`: Machine learning utilities
136
- - `plotly>=5.0.0`: Interactive visualizations
137
-
138
- ## Limitations
139
-
140
- 1. **Market Hours**: Intraday data (hourly/15-minute) only available during market hours
141
- 2. **Data Quality**: Dependent on yfinance data availability and quality
142
- 3. **Model Complexity**: Advanced features may increase computation time
143
- 4. **GPU Requirements**: Chronos model requires CUDA-capable GPU for optimal performance
144
-
145
- ## Disclaimer
146
-
147
- This tool is for educational and research purposes only. Stock predictions are inherently uncertain and should not be used as the sole basis for investment decisions. Always conduct thorough research and consider consulting with financial professionals before making investment decisions.
148
-
149
- ## Contributing
150
-
151
- Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests.
152
-
153
- ## License
154
-
155
- This project is licensed under the MIT License - see the LICENSE file for details.
156
-
157
- ## Practical Example: Creating a 6-Month 8% Yield Structured Product
158
-
159
- ### Scenario
160
- A bank needs to create a structured product that offers an 8% yield over 6 months while maintaining profitability for the institution.
161
-
162
- ### Step-by-Step Implementation
163
-
164
- 1. **Initial Stock Screening**
165
- - Use the application to analyze stocks with:
166
- - High liquidity (for easy hedging)
167
- - Stable volatility (for predictable risk)
168
- - Strong technical indicators
169
- - Positive long-term trends
170
- - Recommended stocks: AAPL, MSFT, GOOGL (high liquidity, stable volatility)
171
-
172
- 2. **Product Structure Design**
173
- - Use the 6-month prediction horizon
174
- - Analyze historical volatility for barrier setting
175
- - Set participation rate based on risk metrics
176
- - Structure: Reverse Convertible with 8% coupon
177
-
178
- 3. **Risk Analysis**
179
- - Use the application's risk metrics:
180
- - Check maximum drawdown (should be < 15% for 6 months)
181
- - Verify liquidity scores (should be > 80%)
182
- - Analyze Sharpe ratio (should be > 1.5)
183
-
184
- 4. **Business Case Example**
185
-
186
- **Product Parameters:**
187
- - Notional Amount: $1,000,000
188
- - Term: 6 months
189
- - Coupon: 8% p.a. (4% for 6 months)
190
- - Underlying: AAPL
191
- - Barrier: 85% of initial price
192
- - Participation: 100%
193
-
194
- **Revenue Structure:**
195
- - Client receives: 8% p.a. (4% for 6 months)
196
- - Bank's hedging cost: ~5% p.a.
197
- - Bank's profit margin: ~3% p.a.
198
- - Total client payout: $40,000 (4% of $1M)
199
- - Bank's profit: $15,000 (1.5% of $1M)
200
-
201
- 5. **Implementation Steps**
202
- - Use the application's extended prediction horizon (180 days)
203
- - Set technical indicators to monitor barrier risk
204
- - Implement dynamic delta hedging based on predictions
205
- - Monitor risk metrics daily using the application
206
-
207
- 6. **Risk Management**
208
- - Use the application's volatility predictions for dynamic hedging
209
- - Monitor technical indicators for early warning signals
210
- - Set up automated alerts for barrier proximity
211
- - Regular rebalancing based on prediction updates
212
-
213
- ### Key Success Factors
214
- - Regular monitoring of prediction accuracy
215
- - Dynamic adjustment of hedging strategy
216
- - Clear communication of product risks to clients
217
- - Proper documentation of all assumptions and methodologies
218
-
219
- This example demonstrates how the application can be used to create profitable structured products while managing risk effectively. The bank can use this framework to create similar products with different underlying assets, terms, and yield targets.
 
13
  - mcp-server-track
14
  ---
15
 
16
+ # Enhanced Stock Prediction System with Amazon Chronos
17
 
18
+ A comprehensive stock prediction and analysis system that leverages Amazon's Chronos foundation model for time series forecasting, enhanced with advanced covariate data, sentiment analysis, and sophisticated uncertainty calculations.
19
 
20
+ ## 🚀 Key Features
21
 
22
  ### Core Prediction Engine
23
+ - **Amazon Chronos Integration**: Uses the state-of-the-art Chronos T5 foundation model for probabilistic time series forecasting
24
+ - **Multi-Timeframe Analysis**: Support for daily, hourly, and 15-minute timeframes
25
+ - **Advanced Ensemble Methods**: Combines multiple algorithms including Random Forest, Gradient Boosting, SVR, and Neural Networks
26
+
27
+ ### Enhanced Covariate Data
28
+ - **Market Indices**: S&P 500, Dow Jones, NASDAQ, VIX, Treasury yields
29
+ - **Sector ETFs**: Financial, Technology, Energy, Healthcare, and more
30
+ - **Commodities**: Gold, Silver, Oil, Natural Gas, Corn, Soybeans
31
+ - **Currencies**: EUR/USD, GBP/USD, JPY/USD, CHF/USD, CAD/USD
32
+ - **Economic Indicators**: Inflation proxies, volatility indices, dollar strength
33
+
34
+ ### Advanced Uncertainty Calculations
35
+ - **Multiple Uncertainty Methods**:
36
+ - Basic quantile-based uncertainty
37
+ - Skewness-adjusted uncertainty
38
+ - Volatility-scaled uncertainty
39
+ - Market condition adjusted uncertainty
40
+ - Time-decay uncertainty
41
+ - Ensemble uncertainty (combines all methods)
42
+ - **Regime-Aware Uncertainty**: Adjusts uncertainty based on market regime detection
43
+ - **Confidence Intervals**: 95% confidence bands with multiple calculation methods
44
+
45
+ ### Enhanced Volume Prediction
46
+ - **Price-Volume Relationship Modeling**: Analyzes the relationship between price movements and volume
47
+ - **Volume Momentum**: Incorporates volume momentum and trends
48
+ - **Market Condition Adjustments**: Adjusts volume predictions based on market volatility
49
+ - **Uncertainty Quantification**: Provides volume prediction uncertainty estimates
50
+
51
+ ### Sentiment Analysis
52
+ - **News Sentiment Scoring**: Analyzes news articles for sentiment polarity
53
+ - **Confidence Levels**: Provides confidence scores for sentiment analysis
54
+ - **Real-time Integration**: Incorporates sentiment data into prediction models
55
+
56
+ ### Market Regime Detection
57
+ - **Hidden Markov Models**: Detects bull, bear, and sideways market regimes
58
+ - **Volatility Clustering**: Identifies periods of high and low volatility
59
+ - **Regime-Aware Predictions**: Adjusts predictions based on current market regime
60
+
61
+ ### Advanced Algorithms
62
+ - **Multi-Algorithm Ensemble**:
63
+ - Random Forest Regressor
64
+ - Gradient Boosting Regressor
65
+ - Ridge Regression
66
+ - Lasso Regression
67
+ - Support Vector Regression (SVR)
68
+ - Multi-Layer Perceptron (MLP)
69
+ - **Time Series Cross-Validation**: Uses expanding window validation for robust model evaluation
70
+ - **Weighted Ensemble**: Combines predictions using uncertainty-weighted averaging
71
+
72
+ ### Financial Smoothing
73
+ - **Multiple Smoothing Methods**:
74
+ - Exponential smoothing (trend following)
75
+ - Moving average (noise reduction)
76
+ - Kalman filter (adaptive smoothing)
77
+ - Savitzky-Golay (preserves peaks/valleys)
78
+ - Double exponential (trend + level)
79
+ - Triple exponential (complex patterns)
80
+ - Adaptive smoothing (volatility-based)
81
+
82
+ ## 📊 Technical Indicators
83
+
84
+ ### Price-Based Indicators
85
+ - **RSI (Relative Strength Index)**: Momentum oscillator with regime-adjusted thresholds
86
+ - **MACD (Moving Average Convergence Divergence)**: Trend-following momentum indicator
87
+ - **Bollinger Bands**: Volatility indicator with position analysis
88
+ - **Moving Averages**: SMA 20, SMA 50 with crossover analysis
89
+
90
+ ### Volume-Based Indicators
91
+ - **Volume-Price Trend**: Analyzes the relationship between volume and price movements
92
+ - **Volume Momentum**: Tracks volume changes over time
93
+ - **Volume Volatility**: Measures volume stability
94
+ - **Volume Ratio**: Compares current volume to historical averages
95
+
96
+ ### Risk Metrics
97
+ - **Sharpe Ratio**: Risk-adjusted return measure
98
+ - **Value at Risk (VaR)**: Maximum expected loss at given confidence level
99
+ - **Maximum Drawdown**: Largest peak-to-trough decline
100
+ - **Beta**: Market correlation measure
101
+ - **Volatility**: Historical and implied volatility measures
102
+
103
+ ## 🛠️ Installation
104
+
105
+ 1. **Install Dependencies**:
106
  ```bash
107
  pip install -r requirements.txt
108
  ```
109
 
110
+ 2. **Key Dependencies**:
111
+ - `chronos-forecasting>=1.0.0`: Amazon's Chronos foundation model
112
+ - `torch>=2.1.2`: PyTorch for deep learning
113
+ - `yfinance>=0.2.0`: Yahoo Finance data
114
+ - `scikit-learn>=1.3.0`: Machine learning algorithms
115
+ - `plotly>=5.0.0`: Interactive visualizations
116
+ - `gradio>=4.0.0`: Web interface
117
+ - `textblob>=0.17.1`: Sentiment analysis
118
+ - `arch>=6.2.0`: GARCH modeling
119
+ - `hmmlearn>=0.3.0`: Hidden Markov Models
120
+
121
+ ## 🚀 Usage
122
+
123
+ ### Web Interface
124
  ```bash
125
  python app.py
126
  ```
127
 
128
+ The application provides a comprehensive web interface with three main tabs:
129
 
130
+ 1. **Daily Analysis**: Long-term investment analysis (up to 365 days)
131
+ 2. **Hourly Analysis**: Medium-term trading analysis (up to 7 days)
132
+ 3. **15-Minute Analysis**: Short-term scalping analysis (up to 3 days)
 
 
 
133
 
134
  ### Advanced Settings
135
+ - **Ensemble Methods**: Enable/disable multi-algorithm ensemble
136
+ - **Regime Detection**: Enable/disable market regime detection
137
  - **Stress Testing**: Enable/disable scenario analysis
138
+ - **Enhanced Covariate Data**: Include market indices, sectors, commodities
139
+ - **Sentiment Analysis**: Include news sentiment analysis
140
+ - **Smoothing**: Choose from multiple smoothing algorithms
141
+
142
+ ### Ensemble Weights
143
+ Configure the weights for different prediction methods:
144
+ - **Chronos Weight**: Weight for Amazon Chronos predictions
145
+ - **Technical Weight**: Weight for technical analysis
146
+ - **Statistical Weight**: Weight for statistical models
147
+
148
+ ## 📈 Prediction Features
149
+
150
+ ### Enhanced Uncertainty Quantification
151
+ The system provides multiple uncertainty calculation methods:
152
+
153
+ 1. **Basic Uncertainty**: Standard quantile-based uncertainty
154
+ 2. **Skewness-Adjusted**: Accounts for asymmetric return distributions
155
+ 3. **Volatility-Scaled**: Scales uncertainty based on historical volatility
156
+ 4. **Market-Adjusted**: Adjusts uncertainty based on VIX and market conditions
157
+ 5. **Time-Decay**: Uncertainty increases with prediction horizon
158
+ 6. **Ensemble Uncertainty**: Combines all methods for robust estimates
159
+
160
+ ### Volume Prediction Improvements
161
+ - **Price-Volume Relationship**: Models the relationship between price movements and volume
162
+ - **Momentum Effects**: Incorporates volume momentum and trends
163
+ - **Market Condition Adjustments**: Adjusts predictions based on market volatility
164
+ - **Uncertainty Quantification**: Provides confidence intervals for volume predictions
165
+
166
+ ### Covariate Integration
167
+ The system automatically collects and integrates:
168
+ - **Market Indices**: S&P 500, Dow Jones, NASDAQ, VIX
169
+ - **Sector Performance**: Financial, Technology, Energy, Healthcare ETFs
170
+ - **Economic Indicators**: Treasury yields, dollar index, commodity prices
171
+ - **Global Markets**: International indices and currencies
172
+
173
+ ## 🔬 Advanced Features
174
 
175
  ### Regime Detection
176
+ Uses Hidden Markov Models to detect market regimes:
177
+ - **Bull Market**: High returns, low volatility
178
+ - **Bear Market**: Low returns, high volatility
179
+ - **Sideways Market**: Low returns, low volatility
180
+
181
+ ### Stress Testing
182
+ Performs scenario analysis under various market conditions:
183
+ - **Market Crash**: -20% market decline
184
+ - **Volatility Spike**: 50% increase in VIX
185
+ - **Interest Rate Shock**: 100 basis point rate increase
186
+ - **Sector Rotation**: Major sector performance shifts
187
+
188
+ ### Sentiment Analysis
189
+ - **News Sentiment**: Analyzes recent news articles for sentiment
190
+ - **Confidence Scoring**: Provides confidence levels for sentiment analysis
191
+ - **Integration**: Incorporates sentiment into prediction models
192
+
193
+ ## 📊 Output Metrics
194
+
195
+ ### Trading Signals
196
+ - **RSI Signals**: Oversold/Overbought with confidence levels
197
+ - **MACD Signals**: Buy/Sell with strength indicators
198
+ - **Bollinger Bands**: Position within bands with breakout signals
199
+ - **SMA Signals**: Trend following with crossover analysis
200
+
201
+ ### Risk Metrics
202
+ - **Sharpe Ratio**: Risk-adjusted return measure
203
+ - **VaR**: Value at Risk at 95% confidence
204
+ - **Maximum Drawdown**: Largest historical decline
205
+ - **Beta**: Market correlation coefficient
206
+ - **Volatility**: Historical and implied volatility
207
+
208
+ ### Enhanced Features
209
+ - **Covariate Data Usage**: Indicates which external data was used
210
+ - **Sentiment Analysis**: News sentiment scores and confidence
211
+ - **Advanced Uncertainty Methods**: List of uncertainty calculation methods used
212
+ - **Regime-Aware Uncertainty**: Whether regime detection was applied
213
+ - **Enhanced Volume Prediction**: Whether advanced volume modeling was used
214
+
215
+ ## 🎯 Use Cases
216
+
217
+ ### Long-Term Investment (Daily Analysis)
218
+ - Portfolio management and asset allocation
219
+ - Strategic investment decisions
220
+ - Risk management and hedging
221
+ - Sector rotation strategies
222
+
223
+ ### Medium-Term Trading (Hourly Analysis)
224
+ - Swing trading strategies
225
+ - Position sizing and timing
226
+ - Intraday volatility analysis
227
+ - Momentum-based trading
228
+
229
+ ### Short-Term Trading (15-Minute Analysis)
230
+ - Scalping strategies
231
+ - High-frequency trading
232
+ - Micro-pattern recognition
233
+ - Ultra-short-term momentum
234
+
235
+ ## 🔧 Configuration
236
+
237
+ ### Model Parameters
238
+ - **Chronos Model**: `amazon/chronos-t5-large` (default)
239
+ - **Context Window**: 64 time steps
240
+ - **Prediction Length**: Configurable up to model limits
241
+ - **Quantile Levels**: [0.1, 0.5, 0.9] for uncertainty estimation
242
+
243
+ ### Data Sources
244
+ - **Primary**: Yahoo Finance (yfinance)
245
+ - **Covariates**: Market indices, ETFs, commodities, currencies
246
+ - **Sentiment**: News articles via yfinance
247
+ - **Economic Data**: Treasury yields, VIX, dollar index
248
+
249
+ ## 📝 Notes
250
+
251
+ - **Market Hours**: Hourly and 15-minute data only available during market hours
252
+ - **Data Limitations**: Yahoo Finance has specific limits for intraday data
253
+ - **Model Performance**: Chronos performs best with sufficient historical data
254
+ - **Uncertainty**: All predictions include comprehensive uncertainty estimates
255
+ - **Ensemble Weights**: Should sum to 1.0 for optimal performance
256
+
257
+ ## 🤝 Contributing
258
+
259
+ This system is designed to be extensible. Key areas for enhancement:
260
+ - Additional covariate data sources
261
+ - New uncertainty calculation methods
262
+ - Advanced sentiment analysis techniques
263
+ - Custom technical indicators
264
+ - Alternative ensemble methods
265
+
266
+ ## 📄 License
267
+
268
+ This project is licensed under the Apache-2.0 License.
269
+
270
+ ## 🙏 Acknowledgments
271
+
272
+ - **Amazon Chronos**: Foundation model for time series forecasting
273
+ - **Yahoo Finance**: Market data provider
274
+ - **Gradio**: Web interface framework
275
+ - **Plotly**: Interactive visualizations
276
+ - **Scikit-learn**: Machine learning algorithms
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
The diff for this file is too large to render. See raw diff
 
requirements.txt CHANGED
@@ -1,36 +1,52 @@
1
- # first pip install numpy scipy scikit-learn all seperately
 
 
 
2
 
3
- pandas_datareader>=0.10.0
4
  torch>=2.1.2
 
 
 
 
5
  pandas>=2.0.0
6
- loguru>=0.7.0
 
 
 
 
7
  matplotlib
8
- neuralforecast
 
 
 
 
 
 
 
 
 
 
9
  retry>=0.9.2
10
- hyperopt
11
- alpaca-trade-api>=3.0.0
12
- SQLAlchemy
13
- websocket-client
14
- py
15
- future
16
- Pillow
17
- ipython
18
- pbr
19
- setuptools
20
- six
21
- wheel
22
- pip
23
  tqdm
24
- optuna
25
- filelock
26
- transformers>=4.36.0
27
- click
28
  requests>=2.31.0
29
  joblib
30
  aiohttp
 
 
 
 
 
 
 
 
 
 
 
31
  tensorboard
32
  msgpack
33
- urllib3
34
  rsa
35
  pyasn1
36
  attrs
@@ -44,7 +60,6 @@ jedi
44
  lxml
45
  Mako
46
  MarkupSafe
47
- pytz>=2023.3
48
  toml
49
  idna
50
  multidict
@@ -52,48 +67,13 @@ cliff
52
  stevedore
53
  autopage
54
  prettytable
55
- certifi
56
  patsy
57
- regex
58
- cachetools>=5.3.0
59
- python-dateutil>=2.8.2
60
- cmaes
61
- alembic
62
- colorlog
63
- traitlets
64
- decorator
65
- backcall
66
- pickleshare
67
- pluggy
68
- iniconfig
69
- yarl
70
- chardet
71
- threadpoolctl
72
- greenlet
73
- Markdown
74
- oauthlib
75
- Werkzeug
76
- fonttools
77
- pyparsing
78
- websockets
79
- statsmodels
80
  tokenizers
81
- alpaca-py>=0.8.0
82
  fastapi
83
  gunicorn
84
  uvicorn
85
  spaces>=0.1.0
86
- numpy>=1.24.0
87
- yfinance>=0.2.0
88
- plotly>=5.0.0
89
- scikit-learn>=1.0.0
90
  python-binance
91
  typer
92
  diskcache
93
- anthropic
94
- gradio>=4.0.0
95
- chronos-forecasting>=1.0.0
96
-
97
- # Advanced features dependencies
98
- hmmlearn>=0.3.0
99
- scipy>=1.10.0
 
1
+ # Core dependencies with version constraints to avoid conflicts
2
+ numpy<2.0.0
3
+ scipy>=1.10.0
4
+ scikit-learn>=1.3.0
5
 
6
+ # Deep learning and ML
7
  torch>=2.1.2
8
+ transformers>=4.36.0
9
+ chronos-forecasting>=1.0.0
10
+
11
+ # Data handling
12
  pandas>=2.0.0
13
+ pandas_datareader>=0.10.0
14
+ yfinance>=0.2.0
15
+
16
+ # Visualization
17
+ plotly>=5.0.0
18
  matplotlib
19
+
20
+ # Web interface
21
+ gradio>=4.0.0
22
+
23
+ # Advanced features
24
+ hmmlearn>=0.3.0
25
+ textblob>=0.17.1
26
+ arch>=6.2.0
27
+
28
+ # Utilities
29
+ loguru>=0.7.0
30
  retry>=0.9.2
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  tqdm
32
+ pytz>=2023.3
33
+ python-dateutil>=2.8.2
 
 
34
  requests>=2.31.0
35
  joblib
36
  aiohttp
37
+ urllib3
38
+ certifi
39
+ regex
40
+ cachetools>=5.3.0
41
+
42
+ # Optional dependencies
43
+ neuralforecast
44
+ hyperopt
45
+ optuna
46
+ filelock
47
+ click
48
  tensorboard
49
  msgpack
 
50
  rsa
51
  pyasn1
52
  attrs
 
60
  lxml
61
  Mako
62
  MarkupSafe
 
63
  toml
64
  idna
65
  multidict
 
67
  stevedore
68
  autopage
69
  prettytable
 
70
  patsy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  tokenizers
 
72
  fastapi
73
  gunicorn
74
  uvicorn
75
  spaces>=0.1.0
 
 
 
 
76
  python-binance
77
  typer
78
  diskcache
79
+ anthropic