Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
@@ -14,16 +14,66 @@ def CLIP_model():
|
|
14 |
token = CLIPTokenizerFast.from_pretrained(model_id)
|
15 |
processor = CLIPProcessor.from_pretrained(model_id)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
def hello_name(name):
|
19 |
-
return "Hello " + name
|
20 |
|
21 |
def main():
|
22 |
CLIP_model()
|
23 |
-
|
24 |
-
|
|
|
25 |
iface.launch(inline = False)
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if __name__ == "__main__":
|
29 |
-
main()
|
|
|
|
14 |
token = CLIPTokenizerFast.from_pretrained(model_id)
|
15 |
processor = CLIPProcessor.from_pretrained(model_id)
|
16 |
|
17 |
+
def load_data():
|
18 |
+
global data
|
19 |
+
data = load_dataset(
|
20 |
+
'frgfm/imagenette',
|
21 |
+
'full_size',
|
22 |
+
split = 'train',
|
23 |
+
ignore_verifications = False
|
24 |
+
)
|
25 |
+
|
26 |
+
def embedding_input(text_input):
|
27 |
+
token_input = token(text_input, return_tensors = "pt")
|
28 |
+
text_embedd = model.get_text_features(**token_input)
|
29 |
+
return text_embedd
|
30 |
+
|
31 |
+
def embedding_img():
|
32 |
+
global img_arr, images
|
33 |
+
images = data['image']
|
34 |
+
batch_size = 10
|
35 |
+
img_arr = None
|
36 |
+
for i in tqdm(range(0, len(images), batch_size)):
|
37 |
+
batch = images[i:i+batch_size]
|
38 |
+
|
39 |
+
batch = processor(
|
40 |
+
text = None,
|
41 |
+
images = batch,
|
42 |
+
return_tensors = 'pt',
|
43 |
+
padding = True
|
44 |
+
)['pixel_values']
|
45 |
+
|
46 |
+
batch_emb = model.get_image_features(pixel_values=batch)
|
47 |
+
batch_emb = batch_emb.squeeze(0)
|
48 |
+
batch_emb = batch_emb.detach().numpy()
|
49 |
+
|
50 |
+
if img_arr is None:
|
51 |
+
img_arr = batch_emb
|
52 |
+
|
53 |
+
else:
|
54 |
+
img_arr = np.concatenate((img_arr, batch_emb), axis = 0)
|
55 |
+
return images, img_arr
|
56 |
+
|
57 |
|
|
|
|
|
58 |
|
59 |
def main():
|
60 |
CLIP_model()
|
61 |
+
load_data()
|
62 |
+
embedding_img()
|
63 |
+
iface = gr.Interface(fn = process, inputs = "text", outputs = "image")
|
64 |
iface.launch(inline = False)
|
65 |
|
66 |
|
67 |
+
def process(text):
|
68 |
+
text_input = embedding_input(text)
|
69 |
+
image_emb = (img_arr.T/np.linalg.norm(img_arr, axis = 1)).T
|
70 |
+
text_emb = text_input.detach().numpy()
|
71 |
+
scores = np.dot(text_emb, image_emb.T)
|
72 |
+
idx = np.argsort(-scores[0])[0]
|
73 |
+
return images[idx]
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
if __name__ == "__main__":
|
78 |
+
main()
|
79 |
+
|