fix error return
Browse files
app.py
CHANGED
|
@@ -30,28 +30,38 @@ def embedding_input(text_input):
|
|
| 30 |
return text_emb
|
| 31 |
|
| 32 |
def embedding_img():
|
| 33 |
-
global images
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
images =
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
batch_emb = batch_emb.squeeze(0)
|
| 43 |
-
image_arr = batch_emb.cpu().detach().numpy()
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return image_arr
|
| 46 |
|
| 47 |
def norm_val(text_input):
|
| 48 |
-
image_arr = embedding_img()
|
| 49 |
-
time.sleep(5)
|
| 50 |
text_emb = embedding_input(text_input)
|
| 51 |
-
|
| 52 |
-
image_arr = (image_arr.T / np.linalg.norm(image_arr, axis = 1)).T
|
| 53 |
text_emb = text_emb.cpu().detach().numpy()
|
| 54 |
-
scores = np.dot(text_emb,
|
| 55 |
top_k = 1
|
| 56 |
idx = np.argsort(-scores[0])[:top_k]
|
| 57 |
return images[idx[0]]
|
|
@@ -61,6 +71,7 @@ def norm_val(text_input):
|
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
|
|
|
| 64 |
load_data()
|
| 65 |
iface = gr.Interface(fn=norm_val, inputs="text", outputs="image")
|
| 66 |
iface.launch(inline = False )
|
|
|
|
| 30 |
return text_emb
|
| 31 |
|
| 32 |
def embedding_img():
|
| 33 |
+
global images, image_arr
|
| 34 |
+
load_data()
|
| 35 |
+
sample_idx= np.random.randint(0, len(imagenette)+1, 100).tolist()
|
| 36 |
+
images = [imagenette[i]['image'] for i in sample_idx]
|
| 37 |
+
batch_sie = 5
|
| 38 |
+
image_arr = None
|
| 39 |
+
for i in tqdm(range(0, len(images), batch_sie)):
|
| 40 |
+
time.sleep(1)
|
| 41 |
+
batch = images[i:i+batch_sie]
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
batch = processor(
|
| 44 |
+
text = None,
|
| 45 |
+
images = batch,
|
| 46 |
+
return_tensors= 'pt',
|
| 47 |
+
padding = True
|
| 48 |
+
)['pixel_values'].to(device)
|
| 49 |
+
batch_emb = model.get_image_features(pixel_values = batch)
|
| 50 |
+
batch_emb = batch_emb.squeeze(0)
|
| 51 |
+
batch_emb = batch_emb.cpu().detach().numpy()
|
| 52 |
+
|
| 53 |
+
if image_arr is None:
|
| 54 |
+
image_arr = batch_emb
|
| 55 |
+
|
| 56 |
+
else:
|
| 57 |
+
image_arr = np.concatenate((image_arr, batch_emb), axis = 0)
|
| 58 |
return image_arr
|
| 59 |
|
| 60 |
def norm_val(text_input):
|
|
|
|
|
|
|
| 61 |
text_emb = embedding_input(text_input)
|
| 62 |
+
image_emb = (image_arr.T / np.linalg.norm(image_arr, axis = 1)).T
|
|
|
|
| 63 |
text_emb = text_emb.cpu().detach().numpy()
|
| 64 |
+
scores = np.dot(text_emb, image_emb.T)
|
| 65 |
top_k = 1
|
| 66 |
idx = np.argsort(-scores[0])[:top_k]
|
| 67 |
return images[idx[0]]
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
if __name__ == "__main__":
|
| 74 |
+
embedding_img()
|
| 75 |
load_data()
|
| 76 |
iface = gr.Interface(fn=norm_val, inputs="text", outputs="image")
|
| 77 |
iface.launch(inline = False )
|