Spaces:
Build error
Build error
| import os | |
| import time | |
| import numpy as np | |
| from skimage import io | |
| import time | |
| from glob import glob | |
| from tqdm import tqdm | |
| import torch, gc | |
| import torch.nn as nn | |
| from torch.autograd import Variable | |
| import torch.optim as optim | |
| import torch.nn.functional as F | |
| from torchvision.transforms.functional import normalize | |
| from models import * | |
| if __name__ == "__main__": | |
| dataset_path="../demo_datasets/your_dataset" #Your dataset path | |
| model_path="../saved_models/IS-Net/isnet-general-use.pth" # the model path | |
| result_path="../demo_datasets/your_dataset_result" #The folder path that you want to save the results | |
| input_size=[1024,1024] | |
| net=ISNetDIS() | |
| if torch.cuda.is_available(): | |
| net.load_state_dict(torch.load(model_path)) | |
| net=net.cuda() | |
| else: | |
| net.load_state_dict(torch.load(model_path,map_location="cpu")) | |
| net.eval() | |
| im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF") | |
| with torch.no_grad(): | |
| for i, im_path in tqdm(enumerate(im_list), total=len(im_list)): | |
| print("im_path: ", im_path) | |
| im = io.imread(im_path) | |
| if len(im.shape) < 3: | |
| im = im[:, :, np.newaxis] | |
| im_shp=im.shape[0:2] | |
| im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) | |
| im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) | |
| image = torch.divide(im_tensor,255.0) | |
| image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) | |
| if torch.cuda.is_available(): | |
| image=image.cuda() | |
| result=net(image) | |
| result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0) | |
| ma = torch.max(result) | |
| mi = torch.min(result) | |
| result = (result-mi)/(ma-mi) | |
| im_name=im_path.split('/')[-1].split('.')[0] | |
| io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)) | |