Spaces:
Build error
Build error
| ## data loader | |
| ## Ackownledgement: | |
| ## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en) | |
| ## for his helps in implementing cache machanism of our DIS dataloader. | |
| from __future__ import print_function, division | |
| import numpy as np | |
| import random | |
| from copy import deepcopy | |
| import json | |
| from tqdm import tqdm | |
| from skimage import io | |
| import os | |
| from glob import glob | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| from torchvision import transforms, utils | |
| from torchvision.transforms.functional import normalize | |
| import torch.nn.functional as F | |
| #### --------------------- DIS dataloader cache ---------------------#### | |
| def get_im_gt_name_dict(datasets, flag='valid'): | |
| print("------------------------------", flag, "--------------------------------") | |
| name_im_gt_list = [] | |
| for i in range(len(datasets)): | |
| print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---") | |
| tmp_im_list, tmp_gt_list = [], [] | |
| tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"]) | |
| # img_name_dict[im_dirs[i][0]] = tmp_im_list | |
| print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list)) | |
| if(datasets[i]["gt_dir"]==""): | |
| print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found') | |
| tmp_gt_list = [] | |
| else: | |
| tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list] | |
| # lbl_name_dict[im_dirs[i][0]] = tmp_gt_list | |
| print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list)) | |
| if flag=="train": ## combine multiple training sets into one dataset | |
| if len(name_im_gt_list)==0: | |
| name_im_gt_list.append({"dataset_name":datasets[i]["name"], | |
| "im_path":tmp_im_list, | |
| "gt_path":tmp_gt_list, | |
| "im_ext":datasets[i]["im_ext"], | |
| "gt_ext":datasets[i]["gt_ext"], | |
| "cache_dir":datasets[i]["cache_dir"]}) | |
| else: | |
| name_im_gt_list[0]["dataset_name"] = name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"] | |
| name_im_gt_list[0]["im_path"] = name_im_gt_list[0]["im_path"] + tmp_im_list | |
| name_im_gt_list[0]["gt_path"] = name_im_gt_list[0]["gt_path"] + tmp_gt_list | |
| if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png": | |
| print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!") | |
| exit() | |
| name_im_gt_list[0]["im_ext"] = ".jpg" | |
| name_im_gt_list[0]["gt_ext"] = ".png" | |
| name_im_gt_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_list[0]["dataset_name"] | |
| else: ## keep different validation or inference datasets as separate ones | |
| name_im_gt_list.append({"dataset_name":datasets[i]["name"], | |
| "im_path":tmp_im_list, | |
| "gt_path":tmp_gt_list, | |
| "im_ext":datasets[i]["im_ext"], | |
| "gt_ext":datasets[i]["gt_ext"], | |
| "cache_dir":datasets[i]["cache_dir"]}) | |
| return name_im_gt_list | |
| def create_dataloaders(name_im_gt_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False): | |
| ## model="train": return one dataloader for training | |
| ## model="valid": return a list of dataloaders for validation or testing | |
| gos_dataloaders = [] | |
| gos_datasets = [] | |
| if(len(name_im_gt_list)==0): | |
| return gos_dataloaders, gos_datasets | |
| num_workers_ = 1 | |
| if(batch_size>1): | |
| num_workers_ = 2 | |
| if(batch_size>4): | |
| num_workers_ = 4 | |
| if(batch_size>8): | |
| num_workers_ = 8 | |
| for i in range(0,len(name_im_gt_list)): | |
| gos_dataset = GOSDatasetCache([name_im_gt_list[i]], | |
| cache_size = cache_size, | |
| cache_path = name_im_gt_list[i]["cache_dir"], | |
| cache_boost = cache_boost, | |
| transform = transforms.Compose(my_transforms)) | |
| gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_)) | |
| gos_datasets.append(gos_dataset) | |
| return gos_dataloaders, gos_datasets | |
| def im_reader(im_path): | |
| return io.imread(im_path) | |
| def im_preprocess(im,size): | |
| if len(im.shape) < 3: | |
| im = im[:, :, np.newaxis] | |
| if im.shape[2] == 1: | |
| im = np.repeat(im, 3, axis=2) | |
| im_tensor = torch.tensor(im.copy(), dtype=torch.float32) | |
| im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1) | |
| if(len(size)<2): | |
| return im_tensor, im.shape[0:2] | |
| else: | |
| im_tensor = torch.unsqueeze(im_tensor,0) | |
| im_tensor = F.upsample(im_tensor, size, mode="bilinear") | |
| im_tensor = torch.squeeze(im_tensor,0) | |
| return im_tensor.type(torch.uint8), im.shape[0:2] | |
| def gt_preprocess(gt,size): | |
| if len(gt.shape) > 2: | |
| gt = gt[:, :, 0] | |
| gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0) | |
| if(len(size)<2): | |
| return gt_tensor.type(torch.uint8), gt.shape[0:2] | |
| else: | |
| gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0) | |
| gt_tensor = F.upsample(gt_tensor, size, mode="bilinear") | |
| gt_tensor = torch.squeeze(gt_tensor,0) | |
| return gt_tensor.type(torch.uint8), gt.shape[0:2] | |
| # return gt_tensor, gt.shape[0:2] | |
| class GOSRandomHFlip(object): | |
| def __init__(self,prob=0.5): | |
| self.prob = prob | |
| def __call__(self,sample): | |
| imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] | |
| # random horizontal flip | |
| if random.random() >= self.prob: | |
| image = torch.flip(image,dims=[2]) | |
| label = torch.flip(label,dims=[2]) | |
| return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} | |
| class GOSResize(object): | |
| def __init__(self,size=[320,320]): | |
| self.size = size | |
| def __call__(self,sample): | |
| imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] | |
| # import time | |
| # start = time.time() | |
| image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0) | |
| label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0) | |
| # print("time for resize: ", time.time()-start) | |
| return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} | |
| class GOSRandomCrop(object): | |
| def __init__(self,size=[288,288]): | |
| self.size = size | |
| def __call__(self,sample): | |
| imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] | |
| h, w = image.shape[1:] | |
| new_h, new_w = self.size | |
| top = np.random.randint(0, h - new_h) | |
| left = np.random.randint(0, w - new_w) | |
| image = image[:,top:top+new_h,left:left+new_w] | |
| label = label[:,top:top+new_h,left:left+new_w] | |
| return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} | |
| class GOSNormalize(object): | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self,sample): | |
| imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] | |
| image = normalize(image,self.mean,self.std) | |
| return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} | |
| class GOSDatasetCache(Dataset): | |
| def __init__(self, name_im_gt_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None): | |
| self.cache_size = cache_size | |
| self.cache_path = cache_path | |
| self.cache_file_name = cache_file_name | |
| self.cache_boost_name = "" | |
| self.cache_boost = cache_boost | |
| # self.ims_npy = None | |
| # self.gts_npy = None | |
| ## cache all the images and ground truth into a single pytorch tensor | |
| self.ims_pt = None | |
| self.gts_pt = None | |
| ## we will cache the npy as well regardless of the cache_boost | |
| # if(self.cache_boost): | |
| self.cache_boost_name = cache_file_name.split('.json')[0] | |
| self.transform = transform | |
| self.dataset = {} | |
| ## combine different datasets into one | |
| dataset_names = [] | |
| dt_name_list = [] # dataset name per image | |
| im_name_list = [] # image name | |
| im_path_list = [] # im path | |
| gt_path_list = [] # gt path | |
| im_ext_list = [] # im ext | |
| gt_ext_list = [] # gt ext | |
| for i in range(0,len(name_im_gt_list)): | |
| dataset_names.append(name_im_gt_list[i]["dataset_name"]) | |
| # dataset name repeated based on the number of images in this dataset | |
| dt_name_list.extend([name_im_gt_list[i]["dataset_name"] for x in name_im_gt_list[i]["im_path"]]) | |
| im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0] for x in name_im_gt_list[i]["im_path"]]) | |
| im_path_list.extend(name_im_gt_list[i]["im_path"]) | |
| gt_path_list.extend(name_im_gt_list[i]["gt_path"]) | |
| im_ext_list.extend([name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]]) | |
| gt_ext_list.extend([name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]]) | |
| self.dataset["data_name"] = dt_name_list | |
| self.dataset["im_name"] = im_name_list | |
| self.dataset["im_path"] = im_path_list | |
| self.dataset["ori_im_path"] = deepcopy(im_path_list) | |
| self.dataset["gt_path"] = gt_path_list | |
| self.dataset["ori_gt_path"] = deepcopy(gt_path_list) | |
| self.dataset["im_shp"] = [] | |
| self.dataset["gt_shp"] = [] | |
| self.dataset["im_ext"] = im_ext_list | |
| self.dataset["gt_ext"] = gt_ext_list | |
| self.dataset["ims_pt_dir"] = "" | |
| self.dataset["gts_pt_dir"] = "" | |
| self.dataset = self.manage_cache(dataset_names) | |
| def manage_cache(self,dataset_names): | |
| if not os.path.exists(self.cache_path): # create the folder for cache | |
| os.makedirs(self.cache_path) | |
| cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size])) | |
| if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache | |
| return self.cache(cache_folder) | |
| return self.load_cache(cache_folder) | |
| def cache(self,cache_folder): | |
| os.mkdir(cache_folder) | |
| cached_dataset = deepcopy(self.dataset) | |
| # ims_list = [] | |
| # gts_list = [] | |
| ims_pt_list = [] | |
| gts_pt_list = [] | |
| for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])): | |
| im_id = cached_dataset["im_name"][i] | |
| print("im_path: ", im_path) | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im,self.cache_size) | |
| im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt") | |
| torch.save(im,im_cache_file) | |
| cached_dataset["im_path"][i] = im_cache_file | |
| if(self.cache_boost): | |
| ims_pt_list.append(torch.unsqueeze(im,0)) | |
| # ims_list.append(im.cpu().data.numpy().astype(np.uint8)) | |
| gt = np.zeros(im.shape[0:2]) | |
| if len(self.dataset["gt_path"])!=0: | |
| gt = im_reader(self.dataset["gt_path"][i]) | |
| gt, gt_shp = gt_preprocess(gt,self.cache_size) | |
| gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt") | |
| torch.save(gt,gt_cache_file) | |
| if len(self.dataset["gt_path"])>0: | |
| cached_dataset["gt_path"][i] = gt_cache_file | |
| else: | |
| cached_dataset["gt_path"].append(gt_cache_file) | |
| if(self.cache_boost): | |
| gts_pt_list.append(torch.unsqueeze(gt,0)) | |
| # gts_list.append(gt.cpu().data.numpy().astype(np.uint8)) | |
| # im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt") | |
| # torch.save(gt_shp, shp_cache_file) | |
| cached_dataset["im_shp"].append(im_shp) | |
| # self.dataset["im_shp"].append(im_shp) | |
| # shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt") | |
| # torch.save(gt_shp, shp_cache_file) | |
| cached_dataset["gt_shp"].append(gt_shp) | |
| # self.dataset["gt_shp"].append(gt_shp) | |
| if(self.cache_boost): | |
| cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt') | |
| cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt') | |
| self.ims_pt = torch.cat(ims_pt_list,dim=0) | |
| self.gts_pt = torch.cat(gts_pt_list,dim=0) | |
| torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"]) | |
| torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"]) | |
| try: | |
| json_file = open(os.path.join(cache_folder, self.cache_file_name),"w") | |
| json.dump(cached_dataset, json_file) | |
| json_file.close() | |
| except Exception: | |
| raise FileNotFoundError("Cannot create JSON") | |
| return cached_dataset | |
| def load_cache(self, cache_folder): | |
| json_file = open(os.path.join(cache_folder,self.cache_file_name),"r") | |
| dataset = json.load(json_file) | |
| json_file.close() | |
| ## if cache_boost is true, we will load the image npy and ground truth npy into the RAM | |
| ## otherwise the pytorch tensor will be loaded | |
| if(self.cache_boost): | |
| # self.ims_npy = np.load(dataset["ims_npy_dir"]) | |
| # self.gts_npy = np.load(dataset["gts_npy_dir"]) | |
| self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu') | |
| self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu') | |
| return dataset | |
| def __len__(self): | |
| return len(self.dataset["im_path"]) | |
| def __getitem__(self, idx): | |
| im = None | |
| gt = None | |
| if(self.cache_boost and self.ims_pt is not None): | |
| # start = time.time() | |
| im = self.ims_pt[idx]#.type(torch.float32) | |
| gt = self.gts_pt[idx]#.type(torch.float32) | |
| # print(idx, 'time for pt loading: ', time.time()-start) | |
| else: | |
| # import time | |
| # start = time.time() | |
| # print("tensor***") | |
| im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:])) | |
| im = torch.load(im_pt_path)#(self.dataset["im_path"][idx]) | |
| gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:])) | |
| gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx]) | |
| # print(idx,'time for tensor loading: ', time.time()-start) | |
| im_shp = self.dataset["im_shp"][idx] | |
| # print("time for loading im and gt: ", time.time()-start) | |
| # start_time = time.time() | |
| im = torch.divide(im,255.0) | |
| gt = torch.divide(gt,255.0) | |
| # print(idx, 'time for normalize torch divide: ', time.time()-start_time) | |
| sample = { | |
| "imidx": torch.from_numpy(np.array(idx)), | |
| "image": im, | |
| "label": gt, | |
| "shape": torch.from_numpy(np.array(im_shp)), | |
| } | |
| if self.transform: | |
| sample = self.transform(sample) | |
| return sample | |