Spaces:
Sleeping
Sleeping
Commit
·
fdf2b7f
1
Parent(s):
ee12cf3
fixes
Browse files
app.py
CHANGED
@@ -1,153 +1,130 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
4 |
-
import
|
5 |
-
import
|
6 |
import threading
|
7 |
-
from
|
|
|
8 |
|
9 |
-
""
|
10 |
-
|
11 |
-
""
|
12 |
-
|
13 |
-
|
14 |
-
print(f"HF_TOKEN is {'available' if HF_TOKEN else 'not available'}")
|
15 |
-
|
16 |
-
# Setup API for the Hugging Face Inference API
|
17 |
-
API_URL = "https://api-inference.huggingface.co/models/Trinoid/Data_Management_Mistral"
|
18 |
-
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
print(f"Status: {response.status_code}")
|
23 |
-
print(f"Response: {response.text[:200]}...") # Print first 200 chars of response
|
24 |
-
|
25 |
-
# Global variable to track if model is warmed up
|
26 |
-
model_warmed_up = False
|
27 |
model_loading = False
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
def
|
31 |
-
"""
|
32 |
-
|
33 |
-
"inputs": inputs,
|
34 |
-
}
|
35 |
|
36 |
-
if
|
37 |
-
|
38 |
-
|
39 |
-
print(f"Sending query to API: {json.dumps(payload, indent=2)[:200]}...")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
for attempt in range(max_attempts):
|
44 |
-
try:
|
45 |
-
response = requests.post(
|
46 |
-
API_URL,
|
47 |
-
headers=headers,
|
48 |
-
json=payload,
|
49 |
-
timeout=180 # 3 minute timeout
|
50 |
-
)
|
51 |
-
|
52 |
-
print(f"API response status: {response.status_code}")
|
53 |
-
|
54 |
-
# If successful, return the result
|
55 |
-
if response.status_code == 200:
|
56 |
-
return response.json()
|
57 |
-
|
58 |
-
# If model is loading, handle the error
|
59 |
-
elif response.status_code == 503 and "estimated_time" in response.json():
|
60 |
-
est_time = response.json()["estimated_time"]
|
61 |
-
print(f"Model is loading. Estimated time: {est_time:.2f} seconds")
|
62 |
-
|
63 |
-
# Wait a portion of the estimated time
|
64 |
-
wait_time = min(30, max(10, est_time / 4))
|
65 |
-
print(f"Waiting {wait_time:.2f} seconds before retry...")
|
66 |
-
time.sleep(wait_time)
|
67 |
-
|
68 |
-
# For other errors, wait and retry
|
69 |
-
else:
|
70 |
-
print(f"API error: {response.text}")
|
71 |
-
wait_time = 10 * (attempt + 1)
|
72 |
-
print(f"Waiting {wait_time} seconds before retry...")
|
73 |
-
time.sleep(wait_time)
|
74 |
-
|
75 |
-
except Exception as e:
|
76 |
-
print(f"Request exception: {str(e)}")
|
77 |
-
wait_time = 15 * (attempt + 1)
|
78 |
-
print(f"Waiting {wait_time} seconds before retry...")
|
79 |
-
time.sleep(wait_time)
|
80 |
|
81 |
-
# If we've tried all attempts and still failed, return None
|
82 |
-
return None
|
83 |
-
|
84 |
-
def is_model_loaded():
|
85 |
-
"""Check if the model is loaded and ready for inference"""
|
86 |
try:
|
87 |
-
#
|
88 |
-
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
except Exception as e:
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
if
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
print("Model is already loaded!")
|
119 |
-
model_warmed_up = True
|
120 |
-
model_loading = False
|
121 |
-
return
|
122 |
-
|
123 |
-
print("Starting model warm-up with basic query...")
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
128 |
-
{"role": "user", "content": "Hi"}
|
129 |
-
]
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
|
|
|
|
|
|
136 |
}
|
137 |
|
138 |
-
#
|
139 |
-
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
model_loading = False
|
148 |
-
|
149 |
-
# Start warmup in background thread
|
150 |
-
threading.Thread(target=warm_up_model, daemon=True).start()
|
151 |
|
152 |
def respond(
|
153 |
message,
|
@@ -157,7 +134,20 @@ def respond(
|
|
157 |
temperature,
|
158 |
top_p,
|
159 |
):
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Create the messages list
|
163 |
messages = [{"role": "system", "content": system_message}]
|
@@ -170,84 +160,19 @@ def respond(
|
|
170 |
|
171 |
messages.append({"role": "user", "content": message})
|
172 |
|
173 |
-
#
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
"
|
184 |
-
|
185 |
-
"
|
186 |
-
}
|
187 |
-
|
188 |
-
# Try multiple times if needed
|
189 |
-
max_retries = 5
|
190 |
-
for attempt in range(max_retries):
|
191 |
-
try:
|
192 |
-
print(f"Attempt {attempt + 1}/{max_retries} to query the model...")
|
193 |
-
|
194 |
-
# Make API request
|
195 |
-
result = query_model(messages, parameters)
|
196 |
-
|
197 |
-
if result:
|
198 |
-
# Handle different response formats
|
199 |
-
if isinstance(result, list) and len(result) > 0:
|
200 |
-
if "generated_text" in result[0]:
|
201 |
-
response = result[0]["generated_text"]
|
202 |
-
model_warmed_up = True
|
203 |
-
yield response
|
204 |
-
return
|
205 |
-
|
206 |
-
# Direct message response format
|
207 |
-
if isinstance(result, dict) and "generated_text" in result:
|
208 |
-
response = result["generated_text"]
|
209 |
-
model_warmed_up = True
|
210 |
-
yield response
|
211 |
-
return
|
212 |
-
|
213 |
-
# For completion format
|
214 |
-
if isinstance(result, str):
|
215 |
-
model_warmed_up = True
|
216 |
-
yield result
|
217 |
-
return
|
218 |
-
|
219 |
-
# Unknown format, show raw result
|
220 |
-
print(f"Unexpected response format: {json.dumps(result, indent=2)[:500]}...")
|
221 |
-
model_warmed_up = True
|
222 |
-
yield str(result)
|
223 |
-
return
|
224 |
-
|
225 |
-
# If query_model returned None, it means all its retries failed
|
226 |
-
print(f"Query attempt {attempt + 1} failed completely")
|
227 |
-
|
228 |
-
if attempt < max_retries - 1:
|
229 |
-
wait_time = 20 * (attempt + 1)
|
230 |
-
yield f"⌛ Still trying to get a response (Attempt {attempt + 1}/{max_retries})..."
|
231 |
-
time.sleep(wait_time)
|
232 |
-
else:
|
233 |
-
yield """❌ The model couldn't be accessed after multiple attempts.
|
234 |
-
|
235 |
-
If you're seeing this on the Nvidia L40 hardware, please try:
|
236 |
-
1. Restarting the space
|
237 |
-
2. Checking your model's size and format
|
238 |
-
3. Contacting Hugging Face support if the issue persists"""
|
239 |
-
return
|
240 |
-
|
241 |
-
except Exception as e:
|
242 |
-
print(f"Unexpected error: {str(e)}")
|
243 |
-
|
244 |
-
if attempt < max_retries - 1:
|
245 |
-
wait_time = 15
|
246 |
-
yield f"⌛ An error occurred. Retrying (Attempt {attempt + 1}/{max_retries})..."
|
247 |
-
time.sleep(wait_time)
|
248 |
-
else:
|
249 |
-
yield f"❌ An error occurred after multiple attempts: {str(e)}"
|
250 |
-
return
|
251 |
|
252 |
"""
|
253 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -266,8 +191,9 @@ demo = gr.ChatInterface(
|
|
266 |
label="Top-p (nucleus sampling)",
|
267 |
),
|
268 |
],
|
269 |
-
description="""This interface uses a fine-tuned Mistral model for Microsoft 365 data management.
|
270 |
-
|
|
|
271 |
)
|
272 |
|
273 |
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import time
|
4 |
+
import torch
|
5 |
+
import traceback
|
6 |
import threading
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
|
8 |
+
from peft import PeftModel
|
9 |
|
10 |
+
print("CUDA available:", torch.cuda.is_available())
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
13 |
+
print(f"CUDA device: {torch.cuda.get_device_name(0)}")
|
14 |
+
print(f"CUDA memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Global variable to track model loading
|
17 |
+
model_loaded = False
|
|
|
|
|
|
|
|
|
|
|
18 |
model_loading = False
|
19 |
+
loading_error = None
|
20 |
+
model = None
|
21 |
+
tokenizer = None
|
22 |
+
pipe = None
|
23 |
|
24 |
+
def load_model_in_thread():
|
25 |
+
"""Load the model in a separate thread to avoid blocking the UI"""
|
26 |
+
global model_loaded, model_loading, loading_error, model, tokenizer, pipe
|
|
|
|
|
27 |
|
28 |
+
if model_loading:
|
29 |
+
return # Already loading
|
|
|
|
|
30 |
|
31 |
+
model_loading = True
|
32 |
+
print("Starting model loading process...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
+
# Load base model
|
36 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
37 |
+
adapter_id = "Trinoid/Data_Management_Mistral"
|
38 |
+
print(f"Loading base model {model_id}...")
|
39 |
|
40 |
+
# Initialize tokenizer
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
+
print("Tokenizer loaded successfully")
|
43 |
|
44 |
+
# Load the base model in 4-bit
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_id,
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
device_map="auto",
|
49 |
+
load_in_4bit=True,
|
50 |
+
)
|
51 |
+
print("Base model loaded successfully")
|
52 |
|
53 |
+
# Load and apply the LoRA adapter
|
54 |
+
print(f"Loading adapter {adapter_id}...")
|
55 |
+
model = PeftModel.from_pretrained(model, adapter_id)
|
56 |
+
print("Adapter loaded and applied successfully")
|
57 |
+
|
58 |
+
# Set up pipeline
|
59 |
+
print("Creating text generation pipeline...")
|
60 |
+
pipe = pipeline(
|
61 |
+
"text-generation",
|
62 |
+
model=model,
|
63 |
+
tokenizer=tokenizer,
|
64 |
+
device_map="auto",
|
65 |
+
)
|
66 |
+
print("Pipeline created successfully")
|
67 |
+
|
68 |
+
model_loaded = True
|
69 |
+
print("Model loading complete! Ready for inference.")
|
70 |
+
|
71 |
except Exception as e:
|
72 |
+
loading_error = str(e)
|
73 |
+
print(f"Error loading model: {str(e)}")
|
74 |
+
traceback.print_exc()
|
75 |
+
|
76 |
+
finally:
|
77 |
+
model_loading = False
|
78 |
|
79 |
+
# Start model loading in background thread
|
80 |
+
threading.Thread(target=load_model_in_thread, daemon=True).start()
|
81 |
+
|
82 |
+
def format_chat_prompt(messages):
|
83 |
+
"""Format messages into a prompt that Mistral-7B-Instruct can understand"""
|
84 |
+
prompt = ""
|
85 |
+
for message in messages:
|
86 |
+
if message["role"] == "system":
|
87 |
+
prompt += f"<s>[INST] {message['content']} [/INST]</s>\n"
|
88 |
+
elif message["role"] == "user":
|
89 |
+
prompt += f"<s>[INST] {message['content']} [/INST]"
|
90 |
+
elif message["role"] == "assistant":
|
91 |
+
prompt += f" {message['content']} </s>\n"
|
92 |
+
return prompt
|
93 |
+
|
94 |
+
def generate_response(messages, max_new_tokens=512, temperature=0.7, top_p=0.95):
|
95 |
+
"""Generate a response from the model"""
|
96 |
+
global model_loaded, loading_error, model, tokenizer, pipe
|
97 |
|
98 |
+
if not model_loaded:
|
99 |
+
if loading_error:
|
100 |
+
return f"Error loading model: {loading_error}"
|
101 |
+
return "Model is still loading. Please wait a moment and try again."
|
102 |
|
103 |
+
# Format the prompt for Mistral
|
104 |
+
prompt = format_chat_prompt(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Set up the streamer for incremental generation
|
107 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
|
|
|
|
|
|
108 |
|
109 |
+
# Generate in a separate thread to enable streaming
|
110 |
+
generation_kwargs = {
|
111 |
+
"input_ids": tokenizer.encode(prompt, return_tensors="pt").to("cuda"),
|
112 |
+
"max_new_tokens": max_new_tokens,
|
113 |
+
"temperature": temperature,
|
114 |
+
"top_p": top_p,
|
115 |
+
"do_sample": True,
|
116 |
+
"streamer": streamer,
|
117 |
}
|
118 |
|
119 |
+
# Start generation in a thread
|
120 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
121 |
+
thread.start()
|
122 |
|
123 |
+
# Stream the output
|
124 |
+
generated_text = ""
|
125 |
+
for new_text in streamer:
|
126 |
+
generated_text += new_text
|
127 |
+
yield generated_text
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
def respond(
|
130 |
message,
|
|
|
134 |
temperature,
|
135 |
top_p,
|
136 |
):
|
137 |
+
"""Respond to user messages"""
|
138 |
+
global model_loaded, model_loading
|
139 |
+
|
140 |
+
# Check if model is loaded
|
141 |
+
if not model_loaded:
|
142 |
+
if model_loading:
|
143 |
+
yield "⌛ The model is still loading. This can take a few minutes on first startup. Please wait or try again later."
|
144 |
+
return
|
145 |
+
else:
|
146 |
+
# Try loading the model if it hasn't started yet
|
147 |
+
if not threading.active_count() > 1: # No background thread running
|
148 |
+
threading.Thread(target=load_model_in_thread, daemon=True).start()
|
149 |
+
yield "⌛ Starting model load now. Please wait a moment and try again."
|
150 |
+
return
|
151 |
|
152 |
# Create the messages list
|
153 |
messages = [{"role": "system", "content": system_message}]
|
|
|
160 |
|
161 |
messages.append({"role": "user", "content": message})
|
162 |
|
163 |
+
# Generate and stream the response
|
164 |
+
try:
|
165 |
+
for response in generate_response(
|
166 |
+
messages,
|
167 |
+
max_new_tokens=max_tokens,
|
168 |
+
temperature=temperature,
|
169 |
+
top_p=top_p
|
170 |
+
):
|
171 |
+
yield response
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Error generating response: {str(e)}")
|
174 |
+
traceback.print_exc()
|
175 |
+
yield f"An error occurred while generating the response: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
"""
|
178 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
191 |
label="Top-p (nucleus sampling)",
|
192 |
),
|
193 |
],
|
194 |
+
description="""This interface uses a fine-tuned Mistral model for Microsoft 365 data management.
|
195 |
+
The model is loaded directly on the L40 GPU for optimal performance.
|
196 |
+
First-time loading may take a few minutes."""
|
197 |
)
|
198 |
|
199 |
|