Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,172 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
import time
|
4 |
-
import html
|
5 |
-
import re
|
6 |
-
import traceback
|
7 |
-
import datetime
|
8 |
-
import threading
|
9 |
-
from collections import defaultdict
|
10 |
|
11 |
"""
|
12 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
13 |
"""
|
14 |
client = InferenceClient("PlantWisdom/Data_Management_Mistral")
|
15 |
|
16 |
-
# Rate limiting settings
|
17 |
-
MAX_REQUESTS_PER_DAY = 100 # Maximum number of requests per IP per day (set to 1 for testing)
|
18 |
-
ip_request_counters = defaultdict(int) # Tracks request count per IP
|
19 |
-
ip_last_reset = {} # Tracks when counters were last reset for each IP
|
20 |
-
rate_limit_lock = threading.Lock() # Lock for thread-safe counter access
|
21 |
-
|
22 |
-
# Expanded comprehensive patterns to filter out thinking and meta-commentary
|
23 |
-
THINKING_PATTERNS = [
|
24 |
-
r"Okay, so I('m| am) (trying to|going to|attempting to)",
|
25 |
-
r"I need to figure out",
|
26 |
-
r"I'll start by",
|
27 |
-
r"Let me try to",
|
28 |
-
r"I'm trying to understand",
|
29 |
-
r"First, I (know|think) that",
|
30 |
-
r"I'll need to look into",
|
31 |
-
r"I'm not entirely (sure|clear)",
|
32 |
-
r"I believe this is",
|
33 |
-
r"I imagine it involves",
|
34 |
-
r"I think I understand",
|
35 |
-
r"From what I (know|remember)",
|
36 |
-
r"Let me think about",
|
37 |
-
r"From my understanding",
|
38 |
-
r"As I understand it",
|
39 |
-
r"To answer this question",
|
40 |
-
r"To address this",
|
41 |
-
r"I'll approach this by",
|
42 |
-
r"I think it's (important|worth) (to note|noting)",
|
43 |
-
r"I (think|believe|wonder|should|also wonder|recall)",
|
44 |
-
r"I also (think|believe|wonder|should|recall)",
|
45 |
-
]
|
46 |
-
|
47 |
-
def get_client_ip():
|
48 |
-
"""Get the client's IP address from the request context"""
|
49 |
-
try:
|
50 |
-
# Try to get IP from Gradio's request context
|
51 |
-
import contextvars
|
52 |
-
request_context = contextvars.ContextVar("request").get()
|
53 |
-
if hasattr(request_context, "client") and request_context.client:
|
54 |
-
return request_context.client.host
|
55 |
-
except:
|
56 |
-
pass
|
57 |
-
|
58 |
-
# Fallback if we can't get a real IP
|
59 |
-
return "127.0.0.1"
|
60 |
-
|
61 |
-
def check_rate_limit():
|
62 |
-
"""Check if the current IP has exceeded its daily limit"""
|
63 |
-
current_ip = get_client_ip()
|
64 |
-
current_date = datetime.datetime.now().date()
|
65 |
-
|
66 |
-
with rate_limit_lock:
|
67 |
-
# Reset counter if it's a new day
|
68 |
-
if current_ip in ip_last_reset and ip_last_reset[current_ip] != current_date:
|
69 |
-
ip_request_counters[current_ip] = 0
|
70 |
-
|
71 |
-
# Update last reset date
|
72 |
-
ip_last_reset[current_ip] = current_date
|
73 |
-
|
74 |
-
# Check if limit is exceeded
|
75 |
-
if ip_request_counters[current_ip] >= MAX_REQUESTS_PER_DAY:
|
76 |
-
return False
|
77 |
-
|
78 |
-
# Increment counter
|
79 |
-
ip_request_counters[current_ip] += 1
|
80 |
-
return True
|
81 |
-
|
82 |
-
def process_final_response(response_text):
|
83 |
-
"""Comprehensive processing of the final response to ensure quality"""
|
84 |
-
|
85 |
-
# Early return if response is too short
|
86 |
-
if len(response_text) < 50:
|
87 |
-
return response_text
|
88 |
-
|
89 |
-
# 1. Remove thinking patterns more aggressively
|
90 |
-
for pattern in THINKING_PATTERNS:
|
91 |
-
response_text = re.sub(pattern, "", response_text, flags=re.IGNORECASE)
|
92 |
-
|
93 |
-
# Remove first person references completely
|
94 |
-
response_text = re.sub(r"\b(I|me|my|mine|myself)\b", "", response_text, flags=re.IGNORECASE)
|
95 |
-
|
96 |
-
# 2. Split into paragraphs
|
97 |
-
paragraphs = [p.strip() for p in response_text.split('\n\n') if p.strip()]
|
98 |
-
|
99 |
-
# 3. Filter meaningless paragraphs
|
100 |
-
filtered_paragraphs = []
|
101 |
-
for para in paragraphs:
|
102 |
-
# Skip too short paragraphs or those that are just meta-commentary
|
103 |
-
if len(para) < 20 or re.search(r"^(In summary|To summarize|In conclusion)", para, re.IGNORECASE):
|
104 |
-
continue
|
105 |
-
|
106 |
-
# Skip paragraphs with thinking patterns
|
107 |
-
skip = False
|
108 |
-
for pattern in THINKING_PATTERNS:
|
109 |
-
if re.search(pattern, para, re.IGNORECASE):
|
110 |
-
skip = True
|
111 |
-
break
|
112 |
-
|
113 |
-
if not skip:
|
114 |
-
filtered_paragraphs.append(para)
|
115 |
-
|
116 |
-
# 4. Remove duplicates and similar paragraphs with stricter threshold
|
117 |
-
unique_paragraphs = []
|
118 |
-
for current in filtered_paragraphs:
|
119 |
-
# Clean for comparison
|
120 |
-
clean_current = re.sub(r'[^\w\s]', '', current.lower())
|
121 |
-
words_current = set(clean_current.split())
|
122 |
-
|
123 |
-
is_duplicate = False
|
124 |
-
for existing in unique_paragraphs:
|
125 |
-
clean_existing = re.sub(r'[^\w\s]', '', existing.lower())
|
126 |
-
words_existing = set(clean_existing.split())
|
127 |
-
|
128 |
-
if len(words_current) > 3 and len(words_existing) > 3: # Ignore very short paragraphs
|
129 |
-
# Calculate word overlap as similarity measure
|
130 |
-
overlap = len(words_current.intersection(words_existing))
|
131 |
-
similarity = overlap / min(len(words_current), len(words_existing))
|
132 |
-
|
133 |
-
if similarity > 0.5: # 50% threshold for similarity (stricter)
|
134 |
-
is_duplicate = True
|
135 |
-
break
|
136 |
-
|
137 |
-
if not is_duplicate:
|
138 |
-
unique_paragraphs.append(current)
|
139 |
-
|
140 |
-
# 5. Structure the response based on detected content
|
141 |
-
title = ""
|
142 |
-
if "retention policies" in response_text.lower() and "retention labels" in response_text.lower():
|
143 |
-
title = "# Retention Policies vs. Retention Labels in Microsoft 365"
|
144 |
-
elif "onedrive" in response_text.lower() and "sharepoint" in response_text.lower():
|
145 |
-
title = "# Key Differences Between OneDrive for Business and SharePoint Online"
|
146 |
-
else:
|
147 |
-
# Extract a title from the content
|
148 |
-
first_para = unique_paragraphs[0] if unique_paragraphs else ""
|
149 |
-
first_sentence = first_para.split('.')[0] if first_para else ""
|
150 |
-
if len(first_sentence) > 10:
|
151 |
-
title = f"# {first_sentence}"
|
152 |
-
else:
|
153 |
-
title = "# Microsoft 365 Information Management"
|
154 |
-
|
155 |
-
# Build structured content with max 2-3 paragraphs
|
156 |
-
final_paras = []
|
157 |
-
if unique_paragraphs:
|
158 |
-
# Limit to just 2-3 most relevant paragraphs
|
159 |
-
final_paras = unique_paragraphs[:min(3, len(unique_paragraphs))]
|
160 |
-
|
161 |
-
# Add a "Use cases" section if we have 3+ paragraphs
|
162 |
-
if len(unique_paragraphs) > 2:
|
163 |
-
final_text = f"{title}\n\n{final_paras[0]}\n\n{final_paras[1]}\n\n## Key Considerations\n\n{final_paras[2]}"
|
164 |
-
else:
|
165 |
-
final_text = f"{title}\n\n" + "\n\n".join(final_paras)
|
166 |
-
else:
|
167 |
-
final_text = f"{title}\n\nNo content available."
|
168 |
-
|
169 |
-
return final_text.strip()
|
170 |
|
171 |
def respond(
|
172 |
message,
|
@@ -176,51 +15,8 @@ def respond(
|
|
176 |
temperature,
|
177 |
top_p,
|
178 |
):
|
179 |
-
|
180 |
-
if not check_rate_limit():
|
181 |
-
current_ip = get_client_ip()
|
182 |
-
next_reset = (datetime.datetime.now() + datetime.timedelta(days=1)).replace(hour=0, minute=0, second=0)
|
183 |
-
hours_until_reset = int((next_reset - datetime.datetime.now()).total_seconds() / 3600)
|
184 |
-
|
185 |
-
limit_message = f"""
|
186 |
-
<div class="rate-limit-warning">
|
187 |
-
<h3>Daily Request Limit Reached</h3>
|
188 |
-
<p>You've reached the maximum of {MAX_REQUESTS_PER_DAY} requests allowed per day.</p>
|
189 |
-
<p>Your limit will reset in approximately {hours_until_reset} hours (at midnight your local time).</p>
|
190 |
-
<p>Please try again tomorrow. Thank you for your understanding!</p>
|
191 |
-
</div>
|
192 |
-
"""
|
193 |
-
yield limit_message
|
194 |
-
return
|
195 |
-
|
196 |
-
# Create a more effective system prompt with stronger instructions
|
197 |
-
enhanced_system_message = f"""You are an expert in Microsoft 365 services including SharePoint, OneDrive, Teams, and the Microsoft 365 compliance ecosystem.
|
198 |
-
{system_message}
|
199 |
-
FORMAT YOUR RESPONSE USING:
|
200 |
-
- Clear, direct language
|
201 |
-
- Markdown formatting with headings and bullet points
|
202 |
-
- Concise, factual information
|
203 |
-
- Specific technical details where appropriate
|
204 |
-
CRITICAL RESPONSE REQUIREMENTS:
|
205 |
-
1. Start IMMEDIATELY with the answer - NO preamble or self-reference
|
206 |
-
2. NEVER use first person (I, me, my) under any circumstances
|
207 |
-
3. NEVER reveal your thought process - just state facts
|
208 |
-
4. Be AUTHORITATIVE and PRECISE
|
209 |
-
5. Present EACH KEY POINT EXACTLY ONCE
|
210 |
-
6. Focus on GOVERNANCE & TECHNICAL details
|
211 |
-
7. Keep total response under 1500 characters
|
212 |
-
8. Use 2-3 paragraphs maximum
|
213 |
-
9. Provide concrete recommendations
|
214 |
-
10. Write as if from an official Microsoft technical document
|
215 |
-
If comparing two services or features:
|
216 |
-
- Begin with clear definitions of both
|
217 |
-
- Focus on FUNCTIONAL differences
|
218 |
-
- List KEY SCENARIOS for each
|
219 |
-
- End with GOVERNANCE implications"""
|
220 |
-
|
221 |
-
messages = [{"role": "system", "content": enhanced_system_message}]
|
222 |
|
223 |
-
# Add history and current message
|
224 |
for val in history:
|
225 |
if val[0]:
|
226 |
messages.append({"role": "user", "content": val[0]})
|
@@ -229,250 +25,40 @@ If comparing two services or features:
|
|
229 |
|
230 |
messages.append({"role": "user", "content": message})
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
top_p=top_p,
|
246 |
-
):
|
247 |
-
token = message.choices[0].delta.content
|
248 |
-
|
249 |
-
# Skip empty tokens
|
250 |
-
if not token:
|
251 |
-
# Check for completion
|
252 |
-
if message.choices[0].finish_reason == "stop":
|
253 |
-
generation_complete = True
|
254 |
-
continue
|
255 |
-
|
256 |
-
# Append token to response
|
257 |
-
full_response += token
|
258 |
-
|
259 |
-
# Store thinking step snapshot every 250 chars
|
260 |
-
if len(full_response) % 250 == 0:
|
261 |
-
thinking_steps.append(full_response)
|
262 |
-
|
263 |
-
# Format and display response
|
264 |
-
thinking_html = ""
|
265 |
-
if thinking_steps:
|
266 |
-
thinking_html = '<div class="thinking-wrapper"><details><summary>Show thinking process</summary><div class="thinking-steps">'
|
267 |
-
for i, step in enumerate(thinking_steps):
|
268 |
-
safe_step = html.escape(step)
|
269 |
-
thinking_html += f'<div class="thinking-step">Step {i+1}: {safe_step}</div>'
|
270 |
-
thinking_html += '</div></details></div>'
|
271 |
-
|
272 |
-
# Yield the response
|
273 |
-
yield f"{thinking_html}{full_response}"
|
274 |
-
|
275 |
-
# Check if we need to post-process the response
|
276 |
-
processed_response = process_final_response(full_response)
|
277 |
-
|
278 |
-
# If the processing made significant changes, show both versions
|
279 |
-
if len(processed_response) < len(full_response) * 0.8 or len(processed_response) > 100:
|
280 |
-
thinking_html = '<div class="thinking-wrapper"><details><summary>Show original response</summary><div class="thinking-steps">'
|
281 |
-
thinking_html += f'<div class="thinking-step">{html.escape(full_response)}</div>'
|
282 |
-
thinking_html += '</div></details></div>'
|
283 |
-
yield f"{thinking_html}{processed_response}"
|
284 |
-
|
285 |
-
except Exception as e:
|
286 |
-
error_msg = f"I apologize, but I encountered an error while generating a response. Error details: {str(e)}"
|
287 |
-
yield error_msg
|
288 |
|
289 |
-
# Custom CSS for Plant Wisdom.AI styling
|
290 |
-
custom_css = """
|
291 |
-
.gradio-container {
|
292 |
-
font-family: 'Source Sans Pro', 'Helvetica Neue', Arial, sans-serif;
|
293 |
-
max-width: 1000px;
|
294 |
-
margin: 0 auto;
|
295 |
-
background-color: #ffffff;
|
296 |
-
}
|
297 |
-
.contain {
|
298 |
-
background-color: #ffffff;
|
299 |
-
border-radius: 12px;
|
300 |
-
box-shadow: 0 4px 6px rgba(0,0,0,0.05);
|
301 |
-
padding: 20px;
|
302 |
-
}
|
303 |
-
.message {
|
304 |
-
padding: 16px 20px;
|
305 |
-
border-radius: 12px;
|
306 |
-
margin: 12px 0;
|
307 |
-
font-size: 16px;
|
308 |
-
line-height: 1.5;
|
309 |
-
}
|
310 |
-
.message.user {
|
311 |
-
background-color: #f5f7fa;
|
312 |
-
margin-left: 15%;
|
313 |
-
border: 1px solid #e8eef7;
|
314 |
-
}
|
315 |
-
.message.assistant {
|
316 |
-
background-color: #f0f7f0;
|
317 |
-
margin-right: 15%;
|
318 |
-
border: 1px solid #e0ede0;
|
319 |
-
color: #2c3338;
|
320 |
-
}
|
321 |
-
.message.assistant p {
|
322 |
-
margin-bottom: 12px;
|
323 |
-
}
|
324 |
-
.message.assistant h1 {
|
325 |
-
font-size: 1.4em;
|
326 |
-
margin-top: 0;
|
327 |
-
margin-bottom: 16px;
|
328 |
-
color: #2e7d32;
|
329 |
-
}
|
330 |
-
.message.assistant h2 {
|
331 |
-
font-size: 1.2em;
|
332 |
-
margin-top: 16px;
|
333 |
-
margin-bottom: 12px;
|
334 |
-
color: #2e7d32;
|
335 |
-
}
|
336 |
-
.message.assistant ul, .message.assistant ol {
|
337 |
-
margin: 12px 0;
|
338 |
-
padding-left: 24px;
|
339 |
-
}
|
340 |
-
.message.assistant li {
|
341 |
-
margin-bottom: 6px;
|
342 |
-
}
|
343 |
-
.thinking-wrapper {
|
344 |
-
margin-bottom: 12px;
|
345 |
-
}
|
346 |
-
details {
|
347 |
-
background-color: #f8faf8;
|
348 |
-
border: 1px solid #e0ede0;
|
349 |
-
border-radius: 8px;
|
350 |
-
padding: 8px;
|
351 |
-
margin-bottom: 16px;
|
352 |
-
}
|
353 |
-
summary {
|
354 |
-
cursor: pointer;
|
355 |
-
color: #2e7d32;
|
356 |
-
font-weight: 500;
|
357 |
-
padding: 4px 8px;
|
358 |
-
}
|
359 |
-
summary:hover {
|
360 |
-
background-color: rgba(46,125,50,0.1);
|
361 |
-
border-radius: 4px;
|
362 |
-
}
|
363 |
-
.thinking-steps {
|
364 |
-
margin-top: 8px;
|
365 |
-
padding: 8px;
|
366 |
-
border-top: 1px solid #e0ede0;
|
367 |
-
max-height: 200px;
|
368 |
-
overflow-y: auto;
|
369 |
-
}
|
370 |
-
.thinking-step {
|
371 |
-
padding: 4px 8px;
|
372 |
-
font-size: 14px;
|
373 |
-
color: #666;
|
374 |
-
border-bottom: 1px dashed #eee;
|
375 |
-
}
|
376 |
-
.thinking-step:last-child {
|
377 |
-
border-bottom: none;
|
378 |
-
}
|
379 |
-
/* Rate limit warning styling */
|
380 |
-
.rate-limit-warning {
|
381 |
-
background-color: #fff3cd;
|
382 |
-
color: #856404;
|
383 |
-
border: 1px solid #ffeeba;
|
384 |
-
border-radius: 8px;
|
385 |
-
padding: 16px;
|
386 |
-
margin: 16px 0;
|
387 |
-
text-align: center;
|
388 |
-
font-weight: 500;
|
389 |
-
}
|
390 |
-
"""
|
391 |
|
392 |
"""
|
393 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
394 |
"""
|
395 |
-
|
396 |
-
chat_interface = gr.ChatInterface(
|
397 |
respond,
|
398 |
-
title="AI Data Management Expert",
|
399 |
-
description="Hello! I am your Data Management Expert, specialized in Microsoft 365. I'm here to help you with guidance on Data Management procedures. How can I assist you today?",
|
400 |
-
theme=gr.themes.Base(
|
401 |
-
primary_hue=gr.themes.Color(
|
402 |
-
c50="#f3f7f3",
|
403 |
-
c100="#e0ede0",
|
404 |
-
c200="#b5d4b5",
|
405 |
-
c300="#8abb8a",
|
406 |
-
c400="#5fa25f",
|
407 |
-
c500="#2e7d32",
|
408 |
-
c600="#1b5e20",
|
409 |
-
c700="#154a19",
|
410 |
-
c800="#0e3511",
|
411 |
-
c900="#082108",
|
412 |
-
c950="#041104"
|
413 |
-
),
|
414 |
-
secondary_hue=gr.themes.Color(
|
415 |
-
c50="#f3f7f3",
|
416 |
-
c100="#e0ede0",
|
417 |
-
c200="#b5d4b5",
|
418 |
-
c300="#8abb8a",
|
419 |
-
c400="#5fa25f",
|
420 |
-
c500="#2e7d32",
|
421 |
-
c600="#1b5e20",
|
422 |
-
c700="#154a19",
|
423 |
-
c800="#0e3511",
|
424 |
-
c900="#082108",
|
425 |
-
c950="#041104"
|
426 |
-
),
|
427 |
-
neutral_hue="slate",
|
428 |
-
spacing_size="lg",
|
429 |
-
radius_size="lg",
|
430 |
-
font=["Source Sans Pro", "Helvetica Neue", "Arial", "sans-serif"],
|
431 |
-
),
|
432 |
-
css=custom_css,
|
433 |
additional_inputs=[
|
434 |
-
gr.Textbox(
|
435 |
-
|
436 |
-
|
437 |
-
Provide accurate, detailed, and practical answers about:
|
438 |
-
Microsoft 365's features, capabilities, and architecture.
|
439 |
-
Document and records management (e.g., retention labels, policies, disposition reviews).
|
440 |
-
Compliance and information governance (e.g., data loss prevention, eDiscovery, retention schedules).
|
441 |
-
SharePoint Online configuration, site management, and usage best practices.
|
442 |
-
Integration points across Microsoft 365 (Teams, Outlook, Power Platform, etc.).
|
443 |
-
Address user questions in a clear, direct manner without simply directing them to official documentation. Instead, share concise explanations and relevant examples.
|
444 |
-
When applicable, highlight best practices, common pitfalls, and recommended solutions based on real-world usage.
|
445 |
-
If you are not certain about an answer or lack enough context, say so clearly rather than guess.
|
446 |
-
Tone and Style:
|
447 |
-
Strive for clarity and helpfulness; avoid excessive jargon.
|
448 |
-
Avoid generic references like "refer to the documentation." Instead, explain or paraphrase relevant information whenever possible.
|
449 |
-
Cite Microsoft's recommended or well-known practices when beneficial, but do so in your own words.
|
450 |
-
Keep responses concise yet sufficiently detailed.
|
451 |
-
Additional Guidelines:
|
452 |
-
Where necessary, provide step-by-step instructions for configurations or troubleshooting.
|
453 |
-
Distinguish between official Microsoft 365 functionalities and custom solutions or third-party tools.
|
454 |
-
If the user's request includes advanced or niche scenarios, do your best to provide an overview, while acknowledging any areas that may require deeper research.
|
455 |
-
Maintain professionalism in all responses; be polite, solution-focused, and proactive.
|
456 |
-
Follow any privacy or ethical guidelines, and do not disclose personally identifiable information about real people.
|
457 |
-
IMPORTANT: If a question has been asked before in the conversation, acknowledge this and either refer back to the previous answer or provide additional context. Do not simply repeat the same answer verbatim.""",
|
458 |
-
label="System message"
|
459 |
-
),
|
460 |
-
gr.Slider(minimum=1, maximum=2048, value=1000, step=1, label="Max new tokens"),
|
461 |
-
gr.Slider(minimum=0.1, maximum=2.0, value=0.35, step=0.05, label="Temperature"),
|
462 |
gr.Slider(
|
463 |
minimum=0.1,
|
464 |
maximum=1.0,
|
465 |
-
value=0.
|
466 |
step=0.05,
|
467 |
label="Top-p (nucleus sampling)",
|
468 |
),
|
469 |
],
|
470 |
)
|
471 |
|
472 |
-
# Create Gradio Blocks app with chat interface
|
473 |
-
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
474 |
-
# Main chat interface
|
475 |
-
chat_interface.render()
|
476 |
|
477 |
if __name__ == "__main__":
|
478 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
client = InferenceClient("PlantWisdom/Data_Management_Mistral")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
"""
|
44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
"""
|
46 |
+
demo = gr.ChatInterface(
|
|
|
47 |
respond,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
gr.Slider(
|
53 |
minimum=0.1,
|
54 |
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
step=0.05,
|
57 |
label="Top-p (nucleus sampling)",
|
58 |
),
|
59 |
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|