Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +140 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,142 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
5 |
|
6 |
-
"""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"
|
29 |
-
"
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
import torch.nn as nn
|
5 |
|
6 |
+
st.set_page_config(page_title="Dasbor Analisis Berita", page_icon="π", layout="wide")
|
7 |
+
|
8 |
+
# --- Fungsi Pemuatan Model (Menggunakan Cache untuk Efisiensi) ---
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def load_fakenews_model():
|
12 |
+
"""Memuat model dan tokenizer untuk deteksi berita palsu."""
|
13 |
+
st.info("Memuat model Deteksi Berita Palsu...")
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("vikram71198/distilroberta-base-finetuned-fake-news-detection")
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained("vikram71198/distilroberta-base-finetuned-fake-news-detection")
|
16 |
+
return tokenizer, model
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_topic_classifier():
|
20 |
+
"""Memuat pipeline untuk klasifikasi topik berita."""
|
21 |
+
st.info("Memuat model Klasifikasi Topik...")
|
22 |
+
device = 0 if torch.cuda.is_available() else -1
|
23 |
+
classifier = pipeline("text-classification", model="classla/multilingual-IPTC-news-topic-classifier", device=device, max_length=512, truncation=True)
|
24 |
+
return classifier
|
25 |
+
|
26 |
+
@st.cache_resource
|
27 |
+
def load_summarizer():
|
28 |
+
"""Memuat pipeline untuk peringkasan teks."""
|
29 |
+
st.info("Memuat model Peringkas Teks...")
|
30 |
+
device = 0 if torch.cuda.is_available() else -1
|
31 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization", device=device)
|
32 |
+
return summarizer
|
33 |
+
|
34 |
+
# --- Memuat semua model di awal ---
|
35 |
+
# Menampilkan pesan loading saat model diunduh/dimuat untuk pertama kali
|
36 |
+
with st.spinner("Mempersiapkan semua model AI... Ini mungkin memakan waktu beberapa saat pada pemuatan pertama."):
|
37 |
+
fakenews_tokenizer, fakenews_model = load_fakenews_model()
|
38 |
+
topic_classifier = load_topic_classifier()
|
39 |
+
summarizer = load_summarizer()
|
40 |
+
|
41 |
+
# --- Antarmuka Pengguna (UI) Streamlit ---
|
42 |
+
st.title("π Dasbor Analisis Berita Cerdas")
|
43 |
+
st.markdown("Analisis berita secara komprehensif: deteksi keaslian, identifikasi topik, dan dapatkan ringkasan instan.")
|
44 |
+
|
45 |
+
st.markdown("---")
|
46 |
+
|
47 |
+
user_input = st.text_area("Masukkan teks artikel berita yang ingin Anda analisis:", height=250, placeholder="Salin dan tempel artikel berita lengkap di sini...")
|
48 |
+
|
49 |
+
analyze_button = st.button("β¨ Analisis Sekarang!", type="primary")
|
50 |
+
|
51 |
+
# --- Logika Backend dan Tampilan Hasil ---
|
52 |
+
if analyze_button and user_input:
|
53 |
+
# Memastikan input tidak terlalu pendek
|
54 |
+
if len(user_input.split()) < 40:
|
55 |
+
st.warning("Teks terlalu pendek. Harap masukkan artikel yang lebih panjang untuk hasil yang akurat.")
|
56 |
+
else:
|
57 |
+
with st.spinner("Menganalisis keaslian, topik, dan membuat ringkasan..."):
|
58 |
+
|
59 |
+
# --- Proses 1: Deteksi Berita Palsu ---
|
60 |
+
encoded_input = fakenews_tokenizer(user_input, truncation=True, padding="max_length", max_length=512, return_tensors='pt')
|
61 |
+
output_logits = fakenews_model(**encoded_input)["logits"]
|
62 |
+
softmax = nn.Softmax(dim=1)
|
63 |
+
probs = softmax(output_logits.detach())
|
64 |
+
prob_real, prob_fake = probs.squeeze().tolist()
|
65 |
+
|
66 |
+
jenis_berita_label = "Berita Nyata" if prob_real > prob_fake else "Berita Palsu"
|
67 |
+
jenis_berita_score = prob_real if prob_real > prob_fake else prob_fake
|
68 |
+
|
69 |
+
# --- Proses 2: Klasifikasi Topik ---
|
70 |
+
topic_result = topic_classifier(user_input)[0]
|
71 |
+
tema_label = topic_result['label'].title()
|
72 |
+
tema_score = topic_result['score']
|
73 |
+
|
74 |
+
# --- Proses 3: Peringkasan Teks ---
|
75 |
+
try:
|
76 |
+
# 1. Hitung jumlah token pada teks input.
|
77 |
+
input_token_count = len(fakenews_tokenizer.encode(user_input))
|
78 |
+
|
79 |
+
# 2. Tentukan target panjang ringkasan (misal, 20% dari input)
|
80 |
+
# dan batasi (clamp) dalam rentang yang aman (minimal 70, maksimal 250 token).
|
81 |
+
target_length = input_token_count // 5 # Target 20% dari panjang input
|
82 |
+
|
83 |
+
# Pastikan target tidak kurang dari 70 dan tidak lebih dari 250
|
84 |
+
safe_max_length = max(70, min(250, target_length))
|
85 |
+
safe_min_length = max(50, safe_max_length // 2) # min_length = setengah dari max_length
|
86 |
+
|
87 |
+
st.info(f"Panjang Input: {input_token_count} token. Target ringkasan: ~{safe_max_length} token.")
|
88 |
+
|
89 |
+
# 3. Panggil summarizer dengan parameter yang sudah dihitung dan aman
|
90 |
+
summary_result = summarizer(
|
91 |
+
user_input,
|
92 |
+
max_length=safe_max_length,
|
93 |
+
min_length=safe_min_length,
|
94 |
+
do_sample=False
|
95 |
+
)[0]
|
96 |
+
ringkasan_teks = summary_result['summary_text']
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
st.error(f"Gagal membuat ringkasan: {e}")
|
100 |
+
ringkasan_teks = "Model tidak dapat memproses teks ini untuk diringkas."
|
101 |
+
|
102 |
+
# --- Menampilkan Hasil Sesuai Format yang Diminta ---
|
103 |
+
st.markdown("---")
|
104 |
+
st.header("Hasil Analisis Komprehensif")
|
105 |
+
|
106 |
+
# Baris 1: Jenis Berita
|
107 |
+
st.markdown("#### 1. Jenis Berita")
|
108 |
+
if jenis_berita_label == "Berita Nyata":
|
109 |
+
st.success(f"**{jenis_berita_label}**")
|
110 |
+
else:
|
111 |
+
st.error(f"**{jenis_berita_label}**")
|
112 |
+
|
113 |
+
# Baris 2: Tema
|
114 |
+
st.markdown("#### 2. Tema")
|
115 |
+
st.info(f"**{tema_label}**")
|
116 |
+
|
117 |
+
# Baris 3: Ringkasan
|
118 |
+
st.markdown("#### 3. Ringkasan")
|
119 |
+
st.markdown(f"> {ringkasan_teks}")
|
120 |
+
|
121 |
+
# Bagian Akurasi di Bawah
|
122 |
+
st.markdown("---")
|
123 |
+
st.subheader("π Tingkat Keyakinan Model")
|
124 |
+
|
125 |
+
col1, col2, col3 = st.columns(3)
|
126 |
+
with col1:
|
127 |
+
st.markdown("**Keaslian**")
|
128 |
+
st.progress(jenis_berita_score)
|
129 |
+
st.write(f"{jenis_berita_score:.2%}")
|
130 |
+
|
131 |
+
with col2:
|
132 |
+
st.markdown("**Topik**")
|
133 |
+
st.progress(tema_score)
|
134 |
+
st.write(f"{tema_score:.2%}")
|
135 |
+
|
136 |
+
with col3:
|
137 |
+
st.markdown("**Ringkasan**")
|
138 |
+
st.info("Tidak Berlaku (Model Generatif)")
|
139 |
+
|
140 |
+
|
141 |
+
elif analyze_button and not user_input:
|
142 |
+
st.error("Mohon masukkan teks berita terlebih dahulu untuk dianalisis.")
|