Upload 3 files
Browse files- .streamlit/config.toml +3 -0
- streamlit_app.py/Homepage.py +40 -16
- streamlit_app.py/pages/Sentiment_Detection.py +117 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[server]
|
2 |
+
runOnSave = true
|
3 |
+
fileWatcherType = "poll"
|
streamlit_app.py/Homepage.py
CHANGED
@@ -1,22 +1,46 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
|
3 |
-
st.set_page_config(
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
)
|
6 |
-
|
7 |
-
st.title("Sentiment Detection")
|
8 |
-
|
9 |
-
st.sidebar.success("Select a page above.")
|
10 |
|
11 |
st.header("The Need for Sentiment Detection")
|
12 |
-
st.
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
st.header("Data Source")
|
18 |
-
st.text("""
|
19 |
-
Data Source: Preprocessed TREC 2007 Public Corpus Dataset.
|
20 |
-
Link: https://www.kaggle.com/datasets/imdeepmind/preprocessed-trec-2007-public-corpus-dataset
|
21 |
-
|
22 |
-
""")
|
|
|
1 |
import streamlit as st
|
2 |
+
from st_pages import Page, show_pages
|
3 |
|
4 |
+
st.set_page_config(page_title="Sentiment Detection", page_icon="π ")
|
5 |
+
|
6 |
+
show_pages(
|
7 |
+
[
|
8 |
+
Page("streamlit_app.py/Homepage.py", "Home", "π "),
|
9 |
+
Page(
|
10 |
+
"streamlit_app.py/pages/Sentiment_Detection.py", "Sentiment Detection", "π"
|
11 |
+
),
|
12 |
+
]
|
13 |
+
)
|
14 |
+
|
15 |
+
st.title("Final Project in Machine Learning Course - Sentiment Detection")
|
16 |
+
st.markdown(
|
17 |
+
"""
|
18 |
+
**Team members:**
|
19 |
+
| Student ID | Full Name |
|
20 |
+
| ---------- | ------------------------ |
|
21 |
+
| 19120600 | BΓΉi NguyΓͺn NghΔ©a |
|
22 |
+
| 20120089 | LΓͺ XuΓ’n HoΓ ng |
|
23 |
+
| 20120422 | Nguyα»
n Thα» Γnh TuyαΊΏt |
|
24 |
+
| 20120460 | LΓͺ Nguyα»
n HαΊ£i DΖ°Ζ‘ng |
|
25 |
+
| 20120494 | LΓͺ XuΓ’n Huy |
|
26 |
+
"""
|
27 |
)
|
|
|
|
|
|
|
|
|
28 |
|
29 |
st.header("The Need for Sentiment Detection")
|
30 |
+
st.markdown(
|
31 |
+
"""
|
32 |
+
Sentiment detection algorithms are used to detect sentiment in a comment or a review.
|
33 |
+
It is said that around 90% of consumers read online reviews before visiting a business or buying a product.
|
34 |
+
These reviews can be positive or negative or neutral, and it is important to know what the customers are saying about your business.
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
|
38 |
+
st.header("Technology used")
|
39 |
+
st.markdown(
|
40 |
+
"""
|
41 |
+
In this demo, we used BERT as the model for sentiment detection. BERT is a transformer-based model that was proposed in 2018 by Google.
|
42 |
+
It is a pre-trained model that can be used for various NLP tasks such as sentiment detection, question answering, etc.
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
streamlit_app.py/pages/Sentiment_Detection.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import path
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
# import pickle
|
5 |
+
|
6 |
+
# from tensorflow import keras
|
7 |
+
import tensorflow as tf
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from transformers import BertModel, BertTokenizer
|
11 |
+
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
MODEL_NAME = "bert-base-cased"
|
15 |
+
MODEL_PATH = path.join(path.dirname(__file__), "bert_model.h5")
|
16 |
+
|
17 |
+
|
18 |
+
# Build the Sentiment Classifier class
|
19 |
+
class SentimentClassifier(nn.Module):
|
20 |
+
# Constructor class
|
21 |
+
def __init__(self, n_classes):
|
22 |
+
super(SentimentClassifier, self).__init__()
|
23 |
+
self.bert = BertModel.from_pretrained(MODEL_NAME)
|
24 |
+
self.drop = nn.Dropout(p=0.3)
|
25 |
+
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
|
26 |
+
|
27 |
+
# Forward propagaion class
|
28 |
+
def forward(self, input_ids, attention_mask):
|
29 |
+
_, pooled_output = self.bert(
|
30 |
+
input_ids=input_ids, attention_mask=attention_mask, return_dict=False
|
31 |
+
)
|
32 |
+
# Add a dropout layer
|
33 |
+
output = self.drop(pooled_output)
|
34 |
+
return self.out(output)
|
35 |
+
|
36 |
+
|
37 |
+
@st.cache_resource
|
38 |
+
def load_model_and_tokenizer():
|
39 |
+
model = SentimentClassifier(3)
|
40 |
+
model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device("cpu")))
|
41 |
+
model.eval()
|
42 |
+
return model, BertTokenizer.from_pretrained("bert-base-cased")
|
43 |
+
|
44 |
+
|
45 |
+
def predict(content):
|
46 |
+
model, tokenizer = load_model_and_tokenizer()
|
47 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
|
49 |
+
encoded_review = tokenizer.encode_plus(
|
50 |
+
content,
|
51 |
+
max_length=160,
|
52 |
+
add_special_tokens=True,
|
53 |
+
return_token_type_ids=False,
|
54 |
+
pad_to_max_length=True,
|
55 |
+
return_attention_mask=True,
|
56 |
+
return_tensors="pt",
|
57 |
+
)
|
58 |
+
|
59 |
+
input_ids = encoded_review["input_ids"].to(device)
|
60 |
+
attention_mask = encoded_review["attention_mask"].to(device)
|
61 |
+
|
62 |
+
output = model(input_ids, attention_mask)
|
63 |
+
_, prediction = torch.max(output, dim=1)
|
64 |
+
|
65 |
+
class_names = ["negative", "neutral", "positive"]
|
66 |
+
|
67 |
+
return class_names[prediction]
|
68 |
+
|
69 |
+
|
70 |
+
def main():
|
71 |
+
st.set_page_config(page_title="Sentiment Detection", page_icon="π")
|
72 |
+
|
73 |
+
# giving a title to our page
|
74 |
+
st.title("Sentiment detection")
|
75 |
+
contents = st.text_area(
|
76 |
+
"Please enter reviews/sentiment/setences/contents:",
|
77 |
+
placeholder="Enter your text here",
|
78 |
+
height=200,
|
79 |
+
)
|
80 |
+
|
81 |
+
prediction = ""
|
82 |
+
|
83 |
+
# Create a prediction button
|
84 |
+
if st.button("Analyze Sentiment"):
|
85 |
+
stripped = contents.strip()
|
86 |
+
if not stripped:
|
87 |
+
st.error("Please enter some text.")
|
88 |
+
return
|
89 |
+
|
90 |
+
prediction = predict(contents)
|
91 |
+
if prediction == "positive":
|
92 |
+
st.success("This is positive π")
|
93 |
+
elif prediction == "negative":
|
94 |
+
st.error("This is negative π")
|
95 |
+
else:
|
96 |
+
st.warning("This is neutral π")
|
97 |
+
|
98 |
+
upload_file = st.file_uploader("Or upload a file", type=["txt"])
|
99 |
+
if upload_file is not None:
|
100 |
+
contents = upload_file.read().decode("utf-8")
|
101 |
+
|
102 |
+
for line in contents.splitlines():
|
103 |
+
line = line.strip()
|
104 |
+
if not line:
|
105 |
+
continue
|
106 |
+
|
107 |
+
prediction = predict(line)
|
108 |
+
if prediction == "positive":
|
109 |
+
st.success(line + "\n\nThis is positive π")
|
110 |
+
elif prediction == "negative":
|
111 |
+
st.error(line + "\n\nThis is negative π")
|
112 |
+
else:
|
113 |
+
st.warning(line + "\n\nThis is neutral π")
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|