GreekBert / app.py
TzepChris's picture
Update app.py
2d6328c verified
raw
history blame
21.9 kB
import gradio as gr
import torch
import unicodedata
import re
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModel
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.preprocessing import normalize as sk_normalize
import chromadb
import joblib
import pickle
import scipy.sparse
import textwrap
import os
import json # Για το διάβασμα του JSON κατά το setup
import tqdm.auto as tq # Για progress bars κατά το setup
# --------------------------- CONFIG για ChatbotVol107 -----------------------------------
# --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
MODEL_NAME = "nlpaueb/bert-base-greek-uncased-v1"
PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol107"
COL_NAME = "collection_chatbotvol107"
ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol107"
DATA_PATH_FOR_SETUP = "./dataset14.json"
# --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
# -------------------------------------------------------------
# --- Παράμετροι Αναζήτησης και Μοντέλου ---
CHUNK_SIZE = 512
CHUNK_OVERLAP = 40
BATCH_EMB = 32 # Για τη δημιουργία των embeddings κατά το setup
ALPHA_BASE = 0.2 # Βέλτιστη τιμή alpha που βρήκατε
ALPHA_LONGQ = 0.35# Βέλτιστη τιμή alpha για μεγάλα queries που βρήκατε
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running ChatbotVol107 on device: {DEVICE}")
print(f"Using model: {MODEL_NAME}")
# === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
def setup_database_and_assets():
print("Checking if database and assets need to be created...")
# Έλεγχος ύπαρξης βασικών αρχείων για να αποφασιστεί αν το setup χρειάζεται
# Ο έλεγχος col.count()
run_setup = True
if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
try:
client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
collection_check = client_check.get_collection(name=COL_NAME)
if collection_check.count() > 0:
print("✓ Database and assets appear to exist and collection is populated. Skipping setup.")
run_setup = False
else:
print("Collection exists but is empty. Proceeding with setup.")
if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση υπάρχει αλλά είναι ελλιπής/άδεια
import shutil
print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
except Exception as e_check: # Π.χ. η συλλογή δεν υπάρχει
print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup.")
if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση φαίνεται κατεστραμμένη
import shutil
print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
if not run_setup:
return True # Το setup δεν χρειάζεται
print(f"!Database/Assets not found or incomplete. Starting setup process.")
print(f"This will take a very long time, especially on the first run !")
ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
DB_DIR_APP.mkdir(parents=True, exist_ok=True)
# --- Helper συναρτήσεις για το setup (τοπικές σε αυτή τη συνάρτηση) ---
def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
_STOP_SETUP = {"σχετικο","σχετικά","με","και"}
def _preprocess_setup(txt:str)->str:
txt = _strip_acc_setup(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
def _chunk_text_setup(text, tokenizer_setup):
token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
if len(token_ids) <= (CHUNK_SIZE - 2): return [text]
ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"]
effective_chunk_size = CHUNK_SIZE
step = effective_chunk_size - CHUNK_OVERLAP
chunks = []
for i in range(0, len(ids_with_special_tokens), step):
current_chunk_ids = ids_with_special_tokens[i:i+effective_chunk_size]
if not current_chunk_ids: break
if len(chunks) > 0 and len(current_chunk_ids) < CHUNK_OVERLAP:
if len(ids_with_special_tokens) - i < effective_chunk_size: pass
else: break
decoded_chunk = tokenizer_setup.decode(current_chunk_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
if decoded_chunk: chunks.append(decoded_chunk)
return chunks if chunks else [text]
def _cls_embed_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
out_embeddings = []
for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup"):
enc = tokenizer_setup(texts[i:i+bs], padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
with torch.no_grad():
model_output = model_setup(**enc)
last_hidden_state = model_output.last_hidden_state
cls_embedding = last_hidden_state[:, 0, :]
cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
out_embeddings.append(cls_normalized.cpu())
return torch.cat(out_embeddings).numpy()
# --- Κύρια Λογική του Setup ---
print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer...")
tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME)
model_setup = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
print("✓ (Setup) Model and Tokenizer loaded.")
print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
if not Path(DATA_PATH_FOR_SETUP).exists():
print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found in the Space repo! Please upload it.")
return False
with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
doc_text = d_setup.get("text")
if not doc_text: continue
chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
if not chunked_doc_texts: continue
for idx, chunk in enumerate(chunked_doc_texts):
if not chunk.strip(): continue
raw_chunks_setup.append(chunk)
pre_chunks_setup.append(_preprocess_setup(chunk))
metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
if not raw_chunks_setup:
print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
return False
print("⏳ (Setup) Building lexical matrices (TF-IDF)...")
char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
print("✓ (Setup) Lexical matrices built.")
print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
print(f" → (Setup) Creating collection: {COL_NAME}")
try: # Προσπάθεια διαγραφής αν υπάρχει για σίγουρη νέα δημιουργία
client_setup.delete_collection(COL_NAME)
except: pass
col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
print("⏳ (Setup) Encoding chunks and streaming to ChromaDB...")
for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB), desc="(Setup) Adding to ChromaDB"):
end_idx = min(start_idx + BATCH_EMB, len(pre_chunks_setup))
batch_pre_chunks = pre_chunks_setup[start_idx:end_idx]
batch_ids = ids_list_setup[start_idx:end_idx]
batch_metadatas = metas_setup[start_idx:end_idx]
if not batch_pre_chunks: continue
batch_embeddings = _cls_embed_setup(batch_pre_chunks, tokenizer_setup, model_setup, bs=BATCH_EMB)
col_setup.add(embeddings=batch_embeddings.tolist(), documents=batch_pre_chunks, metadatas=batch_metadatas, ids=batch_ids)
final_count = col_setup.count()
print(f"✓ (Setup) Index built and stored in ChromaDB. Final count: {final_count}")
if final_count != len(ids_list_setup):
print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
# return False # Αποφασίζουμε αν αυτό είναι κρίσιμο σφάλμα ή απλή προειδοποίηση
print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
print("✓ (Setup) Assets saved.")
del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup
del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
if DEVICE == "cuda":
torch.cuda.empty_cache()
print("🎉 (Setup) Database and assets creation process complete!")
return True
# ==================================================================
setup_successful = setup_database_and_assets()
# ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
def strip_acc(s: str) -> str:
return ''.join(ch for ch in unicodedata.normalize('NFD', s)
if not unicodedata.combining(ch))
STOP = {"σχετικο", "σχετικα", "με", "και"}
def preprocess(txt: str) -> str:
txt = strip_acc(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in STOP)
# cls_embed για την εφαρμογή Gradio (ένα query κάθε φορά)
def cls_embed(texts, tokenizer_app, model_app):
out = []
enc = tokenizer_app(texts, padding=True, truncation=True,
max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
with torch.no_grad():
model_output = model_app(**enc)
last_hidden_state = model_output.last_hidden_state
cls_embedding = last_hidden_state[:, 0, :]
cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
out.append(cls_normalized.cpu())
return torch.cat(out).numpy()
# ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
tok = None
model = None
char_vec = None
word_vec = None
X_char = None
X_word = None
pre_chunks = None
raw_chunks = None
ids = None
metas = None
col = None
if setup_successful:
print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App...")
try:
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
print("✓ Model and tokenizer loaded for Gradio App.")
except Exception as e:
print(f"CRITICAL ERROR loading model/tokenizer for Gradio App: {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
try:
char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
print("✓ TF-IDF/Assets loaded for Gradio App.")
except Exception as e:
print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App: {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
try:
client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
col = client.get_collection(COL_NAME) # Αν δεν υπάρχει μετά το setup, εδώ θα γίνει σφάλμα.
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
if col.count() == 0 and len(ids) > 0: # Αν υπάρχουν ids αλλά η βάση είναι άδεια
print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY at {DB_DIR_APP} but assets were loaded. Setup might have failed to populate DB correctly.")
setup_successful = False
except Exception as e:
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App: {e}")
setup_successful = False
else:
print("!!! Setup process failed or was skipped. Gradio app will not function correctly. !!!")
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
def hybrid_search_gradio(query, k=5):
if not setup_successful or not ids or not col or not model or not tok:
return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά. Τα δεδομένα ή το μοντέλο δεν φορτώθηκαν. Ελέγξτε τα logs εκκίνησης."
if not query.strip():
return "Παρακαλώ εισάγετε μια ερώτηση."
q_pre = preprocess(query)
words = q_pre.split()
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
q_emb_np = cls_embed([q_pre], tok, model)
q_emb_list = q_emb_np.tolist()
try:
sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
except Exception as e:
# Εκτύπωση του σφάλματος στα logs του server για διάγνωση
print(f"ERROR during ChromaDB query in hybrid_search_gradio: {type(e).__name__}: {e}")
return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
q_char_sparse = char_vec.transform([q_pre])
q_char_normalized = sk_normalize(q_char_sparse)
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
q_word_sparse = word_vec.transform([q_pre])
q_word_normalized = sk_normalize(q_word_sparse)
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
lex_sims = {}
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
if c_score > 0 or w_score > 0:
if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
scored = []
for chunk_id_key in all_chunk_ids_set:
s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
if chunk_id_key in exact_ids_set: s = 1.0
scored.append((chunk_id_key, s))
scored.sort(key=lambda x: x[1], reverse=True)
hits_output = []
seen_doc_main_ids = set()
for chunk_id_val, score_val in scored:
try: idx_in_lists = ids.index(chunk_id_val)
except ValueError: print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping."); continue
doc_meta = metas[idx_in_lists]
doc_main_id = doc_meta['id']
if doc_main_id in seen_doc_main_ids: continue
original_url_from_meta = doc_meta.get('url', '#')
pdf_gcs_url = "#"
pdf_filename_display = "N/A"
if original_url_from_meta and original_url_from_meta != '#':
pdf_filename_extracted = os.path.basename(original_url_from_meta)
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
pdf_filename_display = pdf_filename_extracted
elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
# else: pdf_filename_display = "No source URL" # This case is covered by initialization
# else: pdf_filename_display = "No source URL" # This case is covered by initialization
hits_output.append({
"score": score_val, "title": doc_meta.get('title', 'N/A'),
"snippet": raw_chunks[idx_in_lists][:500] + " ...",
"original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
"pdf_filename_display": pdf_filename_display
})
seen_doc_main_ids.add(doc_main_id)
if len(hits_output) >= k: break
if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
for hit in hits_output:
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
output_md += "---\n"
return output_md
# ---------------------- GRADIO INTERFACE -----------------------------------
print("🚀 Launching Gradio Interface for GreekBert...")
iface = gr.Interface(
fn=hybrid_search_gradio,
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {MODEL_NAME.split('/')[-1]}):"),
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (GreekBert - {MODEL_NAME.split('/')[-1]})",
description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
"Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
allow_flagging="never",
examples=[
["Τεχνολογίας τροφίμων;", 5],
["Αμπελουργίας και της οινολογίας", 3],
["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
],
)
if __name__ == '__main__':
# Το allowed_paths δεν είναι απαραίτητο αν δεν εξυπηρετούνται άλλα τοπικά στατικά αρχεία.
iface.launch()