TzepChris commited on
Commit
f3533df
·
verified ·
1 Parent(s): ad49ab3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +380 -380
app.py CHANGED
@@ -1,381 +1,381 @@
1
- import gradio as gr
2
- import torch
3
- import unicodedata
4
- import re
5
- import numpy as np
6
- from pathlib import Path
7
- from transformers import AutoTokenizer, AutoModel
8
- from sklearn.feature_extraction.text import HashingVectorizer
9
- from sklearn.preprocessing import normalize as sk_normalize
10
- import chromadb
11
- import joblib
12
- import pickle
13
- import scipy.sparse
14
- import textwrap
15
- import os
16
- import json # Για το διάβασμα του JSON κατά το setup
17
- import tqdm.auto as tq # Για progress bars κατά το setup
18
-
19
- # --------------------------- CONFIG για ChatbotVol107 -----------------------------------
20
- # --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
21
- MODEL_NAME = "nlpaueb/bert-base-greek-uncased-v1"
22
- PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
23
- DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol107"
24
- COL_NAME = "collection_chatbotvol107"
25
- ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol107"
26
- DATA_PATH_FOR_SETUP = "./dataset14.json"
27
-
28
- # --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
29
- GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
30
- GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
31
- # -------------------------------------------------------------
32
-
33
- # --- Παράμετροι Αναζήτησης και Μοντέλου ---
34
- CHUNK_SIZE = 512
35
- CHUNK_OVERLAP = 40
36
- BATCH_EMB = 32 # Για τη δημιουργία των embeddings κατά το setup
37
- ALPHA_BASE = 0.2 # Βέλτιστη τιμή alpha που βρήκατε
38
- ALPHA_LONGQ = 0.35# Βέλτιστη τιμή alpha για μεγάλα queries που βρήκατε
39
- DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
40
-
41
- print(f"Running ChatbotVol107 on device: {DEVICE}")
42
- print(f"Using model: {MODEL_NAME}")
43
-
44
- # === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
45
- def setup_database_and_assets():
46
- print("Checking if database and assets need to be created...")
47
- # Έλεγχος ύπαρξης βασικών αρχείων για να αποφασιστεί αν το setup χρειάζεται
48
- # Ο έλεγχος col.count()
49
- run_setup = True
50
- if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
51
- try:
52
- client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
53
- collection_check = client_check.get_collection(name=COL_NAME)
54
- if collection_check.count() > 0:
55
- print("✓ Database and assets appear to exist and collection is populated. Skipping setup.")
56
- run_setup = False
57
- else:
58
- print("Collection exists but is empty. Proceeding with setup.")
59
- if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση υπάρχει αλλά είναι ελλιπής/άδεια
60
- import shutil
61
- print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
62
- shutil.rmtree(DB_DIR_APP)
63
- except Exception as e_check: # Π.χ. η συλλογή δεν υπάρχει
64
- print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup.")
65
- if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση φαίνεται κατεστραμμένη
66
- import shutil
67
- print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
68
- shutil.rmtree(DB_DIR_APP)
69
-
70
- if not run_setup:
71
- return True # Το setup δεν χρειάζεται
72
-
73
- print(f"!Database/Assets not found or incomplete. Starting setup process.")
74
- print(f"This will take a very long time, especially on the first run !")
75
-
76
- ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
77
- DB_DIR_APP.mkdir(parents=True, exist_ok=True)
78
-
79
- # --- Helper συναρτήσεις για το setup (τοπικές σε αυτή τη συνάρτηση) ---
80
- def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
81
- _STOP_SETUP = {"σχετικο","σχετικά","με","και"}
82
- def _preprocess_setup(txt:str)->str:
83
- txt = _strip_acc_setup(txt.lower())
84
- txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
85
- txt = re.sub(r"\s+", " ", txt).strip()
86
- return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
87
-
88
- def _chunk_text_setup(text, tokenizer_setup):
89
- token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
90
- if len(token_ids) <= (CHUNK_SIZE - 2): return [text]
91
- ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"]
92
- effective_chunk_size = CHUNK_SIZE
93
- step = effective_chunk_size - CHUNK_OVERLAP
94
- chunks = []
95
- for i in range(0, len(ids_with_special_tokens), step):
96
- current_chunk_ids = ids_with_special_tokens[i:i+effective_chunk_size]
97
- if not current_chunk_ids: break
98
- if len(chunks) > 0 and len(current_chunk_ids) < CHUNK_OVERLAP:
99
- if len(ids_with_special_tokens) - i < effective_chunk_size: pass
100
- else: break
101
- decoded_chunk = tokenizer_setup.decode(current_chunk_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
102
- if decoded_chunk: chunks.append(decoded_chunk)
103
- return chunks if chunks else [text]
104
-
105
- def _cls_embed_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
106
- out_embeddings = []
107
- for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup"):
108
- enc = tokenizer_setup(texts[i:i+bs], padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
109
- with torch.no_grad():
110
- model_output = model_setup(**enc)
111
- last_hidden_state = model_output.last_hidden_state
112
- cls_embedding = last_hidden_state[:, 0, :]
113
- cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
114
- out_embeddings.append(cls_normalized.cpu())
115
- return torch.cat(out_embeddings).numpy()
116
-
117
- # --- Κύρια Λογική του Setup ---
118
- print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer...")
119
- tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME)
120
- model_setup = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
121
- print("✓ (Setup) Model and Tokenizer loaded.")
122
-
123
- print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
124
- if not Path(DATA_PATH_FOR_SETUP).exists():
125
- print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found in the Space repo! Please upload it.")
126
- return False
127
-
128
- with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
129
-
130
- raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
131
- for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
132
- doc_text = d_setup.get("text")
133
- if not doc_text: continue
134
- chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
135
- if not chunked_doc_texts: continue
136
- for idx, chunk in enumerate(chunked_doc_texts):
137
- if not chunk.strip(): continue
138
- raw_chunks_setup.append(chunk)
139
- pre_chunks_setup.append(_preprocess_setup(chunk))
140
- metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
141
- ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
142
-
143
- print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
144
- if not raw_chunks_setup:
145
- print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
146
- return False
147
-
148
- print("⏳ (Setup) Building lexical matrices (TF-IDF)...")
149
- char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
150
- word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
151
- X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
152
- X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
153
- print("✓ (Setup) Lexical matrices built.")
154
-
155
- print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
156
- client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
157
- print(f" → (Setup) Creating collection: {COL_NAME}")
158
- try: # Προσπάθεια διαγραφής αν υπάρχει για σίγουρη νέα δημιουργία
159
- client_setup.delete_collection(COL_NAME)
160
- except: pass
161
- col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
162
-
163
- print("⏳ (Setup) Encoding chunks and streaming to ChromaDB...")
164
- for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB), desc="(Setup) Adding to ChromaDB"):
165
- end_idx = min(start_idx + BATCH_EMB, len(pre_chunks_setup))
166
- batch_pre_chunks = pre_chunks_setup[start_idx:end_idx]
167
- batch_ids = ids_list_setup[start_idx:end_idx]
168
- batch_metadatas = metas_setup[start_idx:end_idx]
169
- if not batch_pre_chunks: continue
170
- batch_embeddings = _cls_embed_setup(batch_pre_chunks, tokenizer_setup, model_setup, bs=BATCH_EMB)
171
- col_setup.add(embeddings=batch_embeddings.tolist(), documents=batch_pre_chunks, metadatas=batch_metadatas, ids=batch_ids)
172
-
173
- final_count = col_setup.count()
174
- print(f"✓ (Setup) Index built and stored in ChromaDB. Final count: {final_count}")
175
- if final_count != len(ids_list_setup):
176
- print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
177
- # return False # Αποφασίζουμε αν αυτό είναι κρίσιμο σφάλμα ή απλή προειδοποίηση
178
-
179
- print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
180
- joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
181
- joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
182
- scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
183
- scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
184
- with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
185
- with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
186
- with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
187
- with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
188
- print("✓ (Setup) Assets saved.")
189
-
190
- del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup
191
- del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
192
- if DEVICE == "cuda":
193
- torch.cuda.empty_cache()
194
- print("🎉 (Setup) Database and assets creation process complete!")
195
- return True
196
- # ==================================================================
197
-
198
- setup_successful = setup_database_and_assets()
199
-
200
- # ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
201
- def strip_acc(s: str) -> str:
202
- return ''.join(ch for ch in unicodedata.normalize('NFD', s)
203
- if not unicodedata.combining(ch))
204
-
205
- STOP = {"σχετικο", "σχετικα", "με", "και"}
206
-
207
- def preprocess(txt: str) -> str:
208
- txt = strip_acc(txt.lower())
209
- txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
210
- txt = re.sub(r"\s+", " ", txt).strip()
211
- return " ".join(w for w in txt.split() if w not in STOP)
212
-
213
- # cls_embed για την εφαρμογή Gradio (ένα query κάθε φορά)
214
- def cls_embed(texts, tokenizer_app, model_app):
215
- out = []
216
- enc = tokenizer_app(texts, padding=True, truncation=True,
217
- max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
218
- with torch.no_grad():
219
- model_output = model_app(**enc)
220
- last_hidden_state = model_output.last_hidden_state
221
- cls_embedding = last_hidden_state[:, 0, :]
222
- cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
223
- out.append(cls_normalized.cpu())
224
- return torch.cat(out).numpy()
225
-
226
- # ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
227
- tok = None
228
- model = None
229
- char_vec = None
230
- word_vec = None
231
- X_char = None
232
- X_word = None
233
- pre_chunks = None
234
- raw_chunks = None
235
- ids = None
236
- metas = None
237
- col = None
238
-
239
- if setup_successful:
240
- print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App...")
241
- try:
242
- tok = AutoTokenizer.from_pretrained(MODEL_NAME)
243
- model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
244
- print("✓ Model and tokenizer loaded for Gradio App.")
245
- except Exception as e:
246
- print(f"CRITICAL ERROR loading model/tokenizer for Gradio App: {e}")
247
- setup_successful = False
248
-
249
- if setup_successful:
250
- print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
251
- try:
252
- char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
253
- word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
254
- X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
255
- X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
256
- with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
257
- with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
258
- with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
259
- with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
260
- print("✓ TF-IDF/Assets loaded for Gradio App.")
261
- except Exception as e:
262
- print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App: {e}")
263
- setup_successful = False
264
-
265
- if setup_successful:
266
- print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
267
- try:
268
- client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
269
- col = client.get_collection(COL_NAME) # Αν δεν υπάρχει μετά το setup, εδώ θα γίνει σφάλμα.
270
- print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
271
- if col.count() == 0 and len(ids) > 0: # Αν υπάρχουν ids αλλά η βάση είναι άδεια
272
- print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY at {DB_DIR_APP} but assets were loaded. Setup might have failed to populate DB correctly.")
273
- setup_successful = False
274
- except Exception as e:
275
- print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App: {e}")
276
- setup_successful = False
277
- else:
278
- print("!!! Setup process failed or was skipped. Gradio app will not function correctly. !!!")
279
-
280
- # ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
281
- def hybrid_search_gradio(query, k=5):
282
- if not setup_successful or not ids or not col or not model or not tok:
283
- return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά. Τα δεδομένα ή το μοντέλο δεν φορτώθηκαν. Ελέγξτε τα logs εκκίνησης."
284
- if not query.strip():
285
- return "Παρακαλώ εισάγετε μια ερώτηση."
286
-
287
- q_pre = preprocess(query)
288
- words = q_pre.split()
289
- alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
290
- exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
291
- q_emb_np = cls_embed([q_pre], tok, model)
292
- q_emb_list = q_emb_np.tolist()
293
-
294
- try:
295
- sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
296
- except Exception as e:
297
- # Εκτύπωση του σφάλματος στα logs του server για διάγνωση
298
- print(f"ERROR during ChromaDB query in hybrid_search_gradio: {type(e).__name__}: {e}")
299
- return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
300
-
301
- sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
302
- q_char_sparse = char_vec.transform([q_pre])
303
- q_char_normalized = sk_normalize(q_char_sparse)
304
- char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
305
- q_word_sparse = word_vec.transform([q_pre])
306
- q_word_normalized = sk_normalize(q_word_sparse)
307
- word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
308
- lex_sims = {}
309
- for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
310
- if c_score > 0 or w_score > 0:
311
- if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
312
- else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
313
-
314
- all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
315
- scored = []
316
- for chunk_id_key in all_chunk_ids_set:
317
- s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
318
- if chunk_id_key in exact_ids_set: s = 1.0
319
- scored.append((chunk_id_key, s))
320
- scored.sort(key=lambda x: x[1], reverse=True)
321
- hits_output = []
322
- seen_doc_main_ids = set()
323
- for chunk_id_val, score_val in scored:
324
- try: idx_in_lists = ids.index(chunk_id_val)
325
- except ValueError: print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping."); continue
326
- doc_meta = metas[idx_in_lists]
327
- doc_main_id = doc_meta['id']
328
- if doc_main_id in seen_doc_main_ids: continue
329
- original_url_from_meta = doc_meta.get('url', '#')
330
- pdf_gcs_url = "#"
331
- pdf_filename_display = "N/A"
332
- if original_url_from_meta and original_url_from_meta != '#':
333
- pdf_filename_extracted = os.path.basename(original_url_from_meta)
334
- if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
335
- pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
336
- pdf_filename_display = pdf_filename_extracted
337
- elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
338
- # else: pdf_filename_display = "No source URL" # This case is covered by initialization
339
- # else: pdf_filename_display = "No source URL" # This case is covered by initialization
340
-
341
- hits_output.append({
342
- "score": score_val, "title": doc_meta.get('title', 'N/A'),
343
- "snippet": raw_chunks[idx_in_lists][:500] + " ...",
344
- "original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
345
- "pdf_filename_display": pdf_filename_display
346
- })
347
- seen_doc_main_ids.add(doc_main_id)
348
- if len(hits_output) >= k: break
349
- if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
350
- output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
351
- for hit in hits_output:
352
- output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
353
- snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
354
- output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
355
- if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
356
- output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
357
- elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
358
- output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
359
- output_md += "---\n"
360
- return output_md
361
-
362
- # ---------------------- GRADIO INTERFACE -----------------------------------
363
- print("🚀 Launching Gradio Interface for ChatbotVol107...")
364
- iface = gr.Interface(
365
- fn=hybrid_search_gradio,
366
- inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {MODEL_NAME.split('/')[-1]}):"),
367
- outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
368
- title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (ChatbotVol107 - {MODEL_NAME.split('/')[-1]})",
369
- description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
370
- "Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
371
- allow_flagging="never",
372
- examples=[
373
- ["Τεχνολογίας τροφίμων;", 5],
374
- ["Αμπελουργίας και της οινολογίας", 3],
375
- ["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
376
- ],
377
- )
378
-
379
- if __name__ == '__main__':
380
- # Το allowed_paths δεν είναι απαραίτητο αν δεν εξυπηρετούνται άλλα τοπικά στατικά αρχεία.
381
  iface.launch()
 
1
+ import gradio as gr
2
+ import torch
3
+ import unicodedata
4
+ import re
5
+ import numpy as np
6
+ from pathlib import Path
7
+ from transformers import AutoTokenizer, AutoModel
8
+ from sklearn.feature_extraction.text import HashingVectorizer
9
+ from sklearn.preprocessing import normalize as sk_normalize
10
+ import chromadb
11
+ import joblib
12
+ import pickle
13
+ import scipy.sparse
14
+ import textwrap
15
+ import os
16
+ import json # Για το διάβασμα του JSON κατά το setup
17
+ import tqdm.auto as tq # Για progress bars κατά το setup
18
+
19
+ # --------------------------- CONFIG για ChatbotVol107 -----------------------------------
20
+ # --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
21
+ MODEL_NAME = "nlpaueb/bert-base-greek-uncased-v1"
22
+ PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
23
+ DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol107"
24
+ COL_NAME = "collection_chatbotvol107"
25
+ ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol107"
26
+ DATA_PATH_FOR_SETUP = "./dataset14.json"
27
+
28
+ # --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
29
+ GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
30
+ GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
31
+ # -------------------------------------------------------------
32
+
33
+ # --- Παράμετροι Αναζήτησης και Μοντέλου ---
34
+ CHUNK_SIZE = 512
35
+ CHUNK_OVERLAP = 40
36
+ BATCH_EMB = 32 # Για τη δημιουργία των embeddings κατά το setup
37
+ ALPHA_BASE = 0.2 # Βέλτιστη τιμή alpha που βρήκατε
38
+ ALPHA_LONGQ = 0.35# Βέλτιστη τιμή alpha για μεγάλα queries που βρήκατε
39
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
40
+
41
+ print(f"Running ChatbotVol107 on device: {DEVICE}")
42
+ print(f"Using model: {MODEL_NAME}")
43
+
44
+ # === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
45
+ def setup_database_and_assets():
46
+ print("Checking if database and assets need to be created...")
47
+ # Έλεγχος ύπαρξης βασικών αρχείων για να αποφασιστεί αν το setup χρειάζεται
48
+ # Ο έλεγχος col.count()
49
+ run_setup = True
50
+ if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
51
+ try:
52
+ client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
53
+ collection_check = client_check.get_collection(name=COL_NAME)
54
+ if collection_check.count() > 0:
55
+ print("✓ Database and assets appear to exist and collection is populated. Skipping setup.")
56
+ run_setup = False
57
+ else:
58
+ print("Collection exists but is empty. Proceeding with setup.")
59
+ if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση υπάρχει αλλά είναι ελλιπής/άδεια
60
+ import shutil
61
+ print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
62
+ shutil.rmtree(DB_DIR_APP)
63
+ except Exception as e_check: # Π.χ. η συλλογή δεν υπάρχει
64
+ print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup.")
65
+ if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση φαίνεται κατεστραμμένη
66
+ import shutil
67
+ print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
68
+ shutil.rmtree(DB_DIR_APP)
69
+
70
+ if not run_setup:
71
+ return True # Το setup δεν χρειάζεται
72
+
73
+ print(f"!Database/Assets not found or incomplete. Starting setup process.")
74
+ print(f"This will take a very long time, especially on the first run !")
75
+
76
+ ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
77
+ DB_DIR_APP.mkdir(parents=True, exist_ok=True)
78
+
79
+ # --- Helper συναρτήσεις για το setup (τοπικές σε αυτή τη συνάρτηση) ---
80
+ def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
81
+ _STOP_SETUP = {"σχετικο","σχετικά","με","και"}
82
+ def _preprocess_setup(txt:str)->str:
83
+ txt = _strip_acc_setup(txt.lower())
84
+ txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
85
+ txt = re.sub(r"\s+", " ", txt).strip()
86
+ return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
87
+
88
+ def _chunk_text_setup(text, tokenizer_setup):
89
+ token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
90
+ if len(token_ids) <= (CHUNK_SIZE - 2): return [text]
91
+ ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"]
92
+ effective_chunk_size = CHUNK_SIZE
93
+ step = effective_chunk_size - CHUNK_OVERLAP
94
+ chunks = []
95
+ for i in range(0, len(ids_with_special_tokens), step):
96
+ current_chunk_ids = ids_with_special_tokens[i:i+effective_chunk_size]
97
+ if not current_chunk_ids: break
98
+ if len(chunks) > 0 and len(current_chunk_ids) < CHUNK_OVERLAP:
99
+ if len(ids_with_special_tokens) - i < effective_chunk_size: pass
100
+ else: break
101
+ decoded_chunk = tokenizer_setup.decode(current_chunk_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
102
+ if decoded_chunk: chunks.append(decoded_chunk)
103
+ return chunks if chunks else [text]
104
+
105
+ def _cls_embed_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
106
+ out_embeddings = []
107
+ for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup"):
108
+ enc = tokenizer_setup(texts[i:i+bs], padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
109
+ with torch.no_grad():
110
+ model_output = model_setup(**enc)
111
+ last_hidden_state = model_output.last_hidden_state
112
+ cls_embedding = last_hidden_state[:, 0, :]
113
+ cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
114
+ out_embeddings.append(cls_normalized.cpu())
115
+ return torch.cat(out_embeddings).numpy()
116
+
117
+ # --- Κύρια Λογική του Setup ---
118
+ print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer...")
119
+ tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME)
120
+ model_setup = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
121
+ print("✓ (Setup) Model and Tokenizer loaded.")
122
+
123
+ print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
124
+ if not Path(DATA_PATH_FOR_SETUP).exists():
125
+ print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found in the Space repo! Please upload it.")
126
+ return False
127
+
128
+ with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
129
+
130
+ raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
131
+ for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
132
+ doc_text = d_setup.get("text")
133
+ if not doc_text: continue
134
+ chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
135
+ if not chunked_doc_texts: continue
136
+ for idx, chunk in enumerate(chunked_doc_texts):
137
+ if not chunk.strip(): continue
138
+ raw_chunks_setup.append(chunk)
139
+ pre_chunks_setup.append(_preprocess_setup(chunk))
140
+ metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
141
+ ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
142
+
143
+ print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
144
+ if not raw_chunks_setup:
145
+ print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
146
+ return False
147
+
148
+ print("⏳ (Setup) Building lexical matrices (TF-IDF)...")
149
+ char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
150
+ word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
151
+ X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
152
+ X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
153
+ print("✓ (Setup) Lexical matrices built.")
154
+
155
+ print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
156
+ client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
157
+ print(f" → (Setup) Creating collection: {COL_NAME}")
158
+ try: # Προσπάθεια διαγραφής αν υπάρχει για σίγουρη νέα δημιουργία
159
+ client_setup.delete_collection(COL_NAME)
160
+ except: pass
161
+ col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
162
+
163
+ print("⏳ (Setup) Encoding chunks and streaming to ChromaDB...")
164
+ for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB), desc="(Setup) Adding to ChromaDB"):
165
+ end_idx = min(start_idx + BATCH_EMB, len(pre_chunks_setup))
166
+ batch_pre_chunks = pre_chunks_setup[start_idx:end_idx]
167
+ batch_ids = ids_list_setup[start_idx:end_idx]
168
+ batch_metadatas = metas_setup[start_idx:end_idx]
169
+ if not batch_pre_chunks: continue
170
+ batch_embeddings = _cls_embed_setup(batch_pre_chunks, tokenizer_setup, model_setup, bs=BATCH_EMB)
171
+ col_setup.add(embeddings=batch_embeddings.tolist(), documents=batch_pre_chunks, metadatas=batch_metadatas, ids=batch_ids)
172
+
173
+ final_count = col_setup.count()
174
+ print(f"✓ (Setup) Index built and stored in ChromaDB. Final count: {final_count}")
175
+ if final_count != len(ids_list_setup):
176
+ print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
177
+ # return False # Αποφασίζουμε αν αυτό είναι κρίσιμο σφάλμα ή απλή προειδοποίηση
178
+
179
+ print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
180
+ joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
181
+ joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
182
+ scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
183
+ scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
184
+ with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
185
+ with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
186
+ with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
187
+ with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
188
+ print("✓ (Setup) Assets saved.")
189
+
190
+ del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup
191
+ del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
192
+ if DEVICE == "cuda":
193
+ torch.cuda.empty_cache()
194
+ print("🎉 (Setup) Database and assets creation process complete!")
195
+ return True
196
+ # ==================================================================
197
+
198
+ setup_successful = setup_database_and_assets()
199
+
200
+ # ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
201
+ def strip_acc(s: str) -> str:
202
+ return ''.join(ch for ch in unicodedata.normalize('NFD', s)
203
+ if not unicodedata.combining(ch))
204
+
205
+ STOP = {"σχετικο", "σχετικα", "με", "και"}
206
+
207
+ def preprocess(txt: str) -> str:
208
+ txt = strip_acc(txt.lower())
209
+ txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
210
+ txt = re.sub(r"\s+", " ", txt).strip()
211
+ return " ".join(w for w in txt.split() if w not in STOP)
212
+
213
+ # cls_embed για την εφαρμογή Gradio (ένα query κάθε φορά)
214
+ def cls_embed(texts, tokenizer_app, model_app):
215
+ out = []
216
+ enc = tokenizer_app(texts, padding=True, truncation=True,
217
+ max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
218
+ with torch.no_grad():
219
+ model_output = model_app(**enc)
220
+ last_hidden_state = model_output.last_hidden_state
221
+ cls_embedding = last_hidden_state[:, 0, :]
222
+ cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
223
+ out.append(cls_normalized.cpu())
224
+ return torch.cat(out).numpy()
225
+
226
+ # ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
227
+ tok = None
228
+ model = None
229
+ char_vec = None
230
+ word_vec = None
231
+ X_char = None
232
+ X_word = None
233
+ pre_chunks = None
234
+ raw_chunks = None
235
+ ids = None
236
+ metas = None
237
+ col = None
238
+
239
+ if setup_successful:
240
+ print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App...")
241
+ try:
242
+ tok = AutoTokenizer.from_pretrained(MODEL_NAME)
243
+ model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
244
+ print("✓ Model and tokenizer loaded for Gradio App.")
245
+ except Exception as e:
246
+ print(f"CRITICAL ERROR loading model/tokenizer for Gradio App: {e}")
247
+ setup_successful = False
248
+
249
+ if setup_successful:
250
+ print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
251
+ try:
252
+ char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
253
+ word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
254
+ X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
255
+ X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
256
+ with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
257
+ with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
258
+ with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
259
+ with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
260
+ print("✓ TF-IDF/Assets loaded for Gradio App.")
261
+ except Exception as e:
262
+ print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App: {e}")
263
+ setup_successful = False
264
+
265
+ if setup_successful:
266
+ print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
267
+ try:
268
+ client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
269
+ col = client.get_collection(COL_NAME) # Αν δεν υπάρχει μετά το setup, εδώ θα γίνει σφάλμα.
270
+ print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
271
+ if col.count() == 0 and len(ids) > 0: # Αν υπάρχουν ids αλλά η βάση είναι άδεια
272
+ print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY at {DB_DIR_APP} but assets were loaded. Setup might have failed to populate DB correctly.")
273
+ setup_successful = False
274
+ except Exception as e:
275
+ print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App: {e}")
276
+ setup_successful = False
277
+ else:
278
+ print("!!! Setup process failed or was skipped. Gradio app will not function correctly. !!!")
279
+
280
+ # ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
281
+ def hybrid_search_gradio(query, k=5):
282
+ if not setup_successful or not ids or not col or not model or not tok:
283
+ return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά. Τα δεδομένα ή το μοντέλο δεν φορτώθηκαν. Ελέγξτε τα logs εκκίνησης."
284
+ if not query.strip():
285
+ return "Παρακαλώ εισάγετε μια ερώτηση."
286
+
287
+ q_pre = preprocess(query)
288
+ words = q_pre.split()
289
+ alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
290
+ exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
291
+ q_emb_np = cls_embed([q_pre], tok, model)
292
+ q_emb_list = q_emb_np.tolist()
293
+
294
+ try:
295
+ sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
296
+ except Exception as e:
297
+ # Εκτύπωση του σφάλματος στα logs του server για διάγνωση
298
+ print(f"ERROR during ChromaDB query in hybrid_search_gradio: {type(e).__name__}: {e}")
299
+ return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
300
+
301
+ sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
302
+ q_char_sparse = char_vec.transform([q_pre])
303
+ q_char_normalized = sk_normalize(q_char_sparse)
304
+ char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
305
+ q_word_sparse = word_vec.transform([q_pre])
306
+ q_word_normalized = sk_normalize(q_word_sparse)
307
+ word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
308
+ lex_sims = {}
309
+ for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
310
+ if c_score > 0 or w_score > 0:
311
+ if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
312
+ else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
313
+
314
+ all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
315
+ scored = []
316
+ for chunk_id_key in all_chunk_ids_set:
317
+ s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
318
+ if chunk_id_key in exact_ids_set: s = 1.0
319
+ scored.append((chunk_id_key, s))
320
+ scored.sort(key=lambda x: x[1], reverse=True)
321
+ hits_output = []
322
+ seen_doc_main_ids = set()
323
+ for chunk_id_val, score_val in scored:
324
+ try: idx_in_lists = ids.index(chunk_id_val)
325
+ except ValueError: print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping."); continue
326
+ doc_meta = metas[idx_in_lists]
327
+ doc_main_id = doc_meta['id']
328
+ if doc_main_id in seen_doc_main_ids: continue
329
+ original_url_from_meta = doc_meta.get('url', '#')
330
+ pdf_gcs_url = "#"
331
+ pdf_filename_display = "N/A"
332
+ if original_url_from_meta and original_url_from_meta != '#':
333
+ pdf_filename_extracted = os.path.basename(original_url_from_meta)
334
+ if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
335
+ pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
336
+ pdf_filename_display = pdf_filename_extracted
337
+ elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
338
+ # else: pdf_filename_display = "No source URL" # This case is covered by initialization
339
+ # else: pdf_filename_display = "No source URL" # This case is covered by initialization
340
+
341
+ hits_output.append({
342
+ "score": score_val, "title": doc_meta.get('title', 'N/A'),
343
+ "snippet": raw_chunks[idx_in_lists][:500] + " ...",
344
+ "original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
345
+ "pdf_filename_display": pdf_filename_display
346
+ })
347
+ seen_doc_main_ids.add(doc_main_id)
348
+ if len(hits_output) >= k: break
349
+ if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
350
+ output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
351
+ for hit in hits_output:
352
+ output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
353
+ snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
354
+ output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
355
+ if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
356
+ output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
357
+ elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
358
+ output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
359
+ output_md += "---\n"
360
+ return output_md
361
+
362
+ # ---------------------- GRADIO INTERFACE -----------------------------------
363
+ print("🚀 Launching Gradio Interface for Meltemi...")
364
+ iface = gr.Interface(
365
+ fn=hybrid_search_gradio,
366
+ inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {MODEL_NAME.split('/')[-1]}):"),
367
+ outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
368
+ title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (Meltemi - {MODEL_NAME.split('/')[-1]})",
369
+ description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
370
+ "Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
371
+ allow_flagging="never",
372
+ examples=[
373
+ ["Τεχνολογίας τροφίμων;", 5],
374
+ ["Αμπελουργίας και της οινολογίας", 3],
375
+ ["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
376
+ ],
377
+ )
378
+
379
+ if __name__ == '__main__':
380
+ # Το allowed_paths δεν είναι απαραίτητο αν δεν εξυπηρετούνται άλλα τοπικά στατικά αρχεία.
381
  iface.launch()