File size: 25,138 Bytes
3c88fa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
from dotenv import load_dotenv
import os
import json
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
AutoModelForTextToWaveform
)
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse
import multiprocessing
import uuid
import numpy as np
from diffusers import FluxPipeline
from tqdm import tqdm
from google.cloud import storage
import io
import spaces
spaces.GPU(duration=0)
load_dotenv()
app = FastAPI()
default_language = "es"
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
if GCS_BUCKET_NAME is None:
raise ValueError("La variable de entorno GCS_BUCKET_NAME no está definida.")
GCS_CREDENTIALS = os.getenv("GCS_CREDENTIALS")
if GCS_CREDENTIALS is None:
raise ValueError("La variable de entorno GCS_CREDENTIALS no está definida.")
gcs_credentials_dict = json.loads(GCS_CREDENTIALS)
with open('gcs_credentials.json', 'w') as f:
json.dump(gcs_credentials_dict, f)
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "gcs_credentials.json"
storage_client = storage.Client()
bucket = storage_client.bucket(GCS_BUCKET_NAME)
AutoTokenizer.from_pretrained("gpt2", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
AutoModelForCausalLM.from_pretrained("gpt2", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
AutoTokenizer.from_pretrained("facebook/musicgen-small", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-small", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
class ChatbotService:
def __init__(self):
self.model_name = "response_model"
self.tokenizer_name = "response_tokenizer"
self.model = self.load_model()
self.tokenizer = self.load_tokenizer()
def get_response(self, user_id, message, language=default_language):
if self.model is None or self.tokenizer is None:
return "El modelo aún no está listo. Por favor, inténtelo de nuevo más tarde."
input_text = f"Usuario: {message} Asistente:"
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to("cuda")
with torch.no_grad():
output = self.model.generate(input_ids=input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2,
early_stopping=True)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
response = response.replace(input_text, "").strip()
return response
def load_model(self):
model_path = f"gs://{GCS_BUCKET_NAME}/model_{self.model_name}"
if bucket.blob(f"model_{self.model_name}").exists():
blob = bucket.blob(f"model_{self.model_name}")
model_bytes = blob.download_as_bytes()
model_buffer = io.BytesIO(model_bytes)
model = AutoModelForCausalLM.from_pretrained("gpt2")
model.load_state_dict(torch.load(model_buffer, map_location=torch.device("cuda")))
return model
return None
def load_tokenizer(self):
tokenizer_path = f"gs://{GCS_BUCKET_NAME}/tokenizer_{self.tokenizer_name}.json"
if bucket.blob(f"tokenizer_{self.tokenizer_name}.json").exists():
blob = bucket.blob(f"tokenizer_{self.tokenizer_name}.json")
tokenizer_bytes = blob.download_as_bytes()
tokenizer_data = json.loads(tokenizer_bytes)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
existing_tokens = tokenizer.get_vocab()
new_tokens = tokenizer_data
for token, id in new_tokens.items():
if token not in existing_tokens:
tokenizer.add_tokens([token])
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
return None
chatbot_service = ChatbotService()
class UnifiedModel(AutoModelForSequenceClassification):
def __init__(self, config):
super().__init__(config)
@staticmethod
def load_model():
model_name = "unified_model"
model_path = f"gs://{GCS_BUCKET_NAME}/model_{model_name}"
if bucket.blob(f"model_{model_name}").exists():
blob = bucket.blob(f"model_{model_name}")
model_bytes = blob.download_as_bytes()
model_buffer = io.BytesIO(model_bytes)
model = UnifiedModel.from_pretrained("gpt2", num_labels=3)
model.load_state_dict(torch.load(model_buffer, map_location=torch.device("cuda")))
return model
else:
model = UnifiedModel.from_pretrained("gpt2", num_labels=3)
model_buffer = io.BytesIO()
torch.save(model.state_dict(), model_buffer)
model_buffer.seek(0)
blob = bucket.blob(f"model_{model_name}")
blob.upload_from_file(model_buffer, content_type="application/octet-stream")
return model
class SyntheticDataset(torch.utils.data.Dataset):
def __init__(self, tokenizer, data):
self.tokenizer = tokenizer
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
text = item['text']
label = item['label']
tokens = self.tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
return {"input_ids": tokens["input_ids"].squeeze(), "attention_mask": tokens["attention_mask"].squeeze(),
"labels": label}
conversation_history = {}
tokenizer_name = "unified_tokenizer"
tokenizer = None
unified_model = None
image_pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16,
cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
image_pipeline.enable_model_cpu_offload()
musicgen_tokenizer = AutoTokenizer.from_pretrained("facebook/musicgen-small")
musicgen_model = AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-small")
@app.on_event("startup")
async def startup_event():
global tokenizer, unified_model
tokenizer_path = f"gs://{GCS_BUCKET_NAME}/tokenizer_{tokenizer_name}.json"
if bucket.blob(f"tokenizer_{tokenizer_name}.json").exists():
blob = bucket.blob(f"tokenizer_{tokenizer_name}.json")
tokenizer_bytes = blob.download_as_bytes()
tokenizer_data = json.loads(tokenizer_bytes)
tokenizer = AutoTokenizer.from_pretrained("gpt2", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
existing_tokens = tokenizer.get_vocab()
new_tokens = tokenizer_data
for token, id in new_tokens.items():
if token not in existing_tokens:
tokenizer.add_tokens([token])
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer = AutoTokenizer.from_pretrained("gpt2", cache_dir=f"gs://{GCS_BUCKET_NAME}/cache")
tokenizer.pad_token = tokenizer.eos_token
unified_model = UnifiedModel.load_model()
unified_model.to(torch.device("cuda"))
@app.post("/process")
async def process(request: Request):
global tokenizer, unified_model
data = await request.json()
if data.get("train"):
user_data = data.get("user_data", [])
if not user_data:
user_data = [
{"text": "Hola", "label": 1},
{"text": "Necesito ayuda", "label": 2},
{"text": "No entiendo", "label": 0}
]
training_queue_path = f"gs://{GCS_BUCKET_NAME}/training_queue.json"
if bucket.blob("training_queue.json").exists():
blob = bucket.blob("training_queue.json")
training_queue_bytes = blob.download_as_bytes()
existing_data = json.loads(training_queue_bytes)
else:
existing_data = []
new_data = existing_data + [{
"tokenizers": {tokenizer_name: tokenizer.get_vocab()},
"data": user_data
}]
new_data_bytes = json.dumps(new_data).encode("utf-8")
blob = bucket.blob("training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
return {"message": "Training data received. Model will be updated asynchronously."}
elif data.get("message"):
user_id = data.get("user_id")
text = data['message']
language = data.get("language", default_language)
if user_id not in conversation_history:
conversation_history[user_id] = []
conversation_history[user_id].append(text)
contextualized_text = " ".join(conversation_history[user_id][-3:])
tokenized_input = tokenizer(contextualized_text, return_tensors="pt")
with torch.no_grad():
logits = unified_model(**tokenized_input).logits
predicted_class = torch.argmax(logits, dim=-1).item()
response = chatbot_service.get_response(user_id, contextualized_text, language)
training_queue_path = f"gs://{GCS_BUCKET_NAME}/training_queue.json"
if bucket.blob("training_queue.json").exists():
blob = bucket.blob("training_queue.json")
training_queue_bytes = blob.download_as_bytes()
existing_data = json.loads(training_queue_bytes)
else:
existing_data = []
new_data = existing_data + [{
"tokenizers": {tokenizer_name: tokenizer.get_vocab()},
"data": [{"text": contextualized_text, "label": predicted_class}]
}]
new_data_bytes = json.dumps(new_data).encode("utf-8")
blob = bucket.blob("training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
return {"answer": response}
else:
raise HTTPException(status_code=400, detail="Request must contain 'train' or 'message'.")
@app.get("/")
async def get_home():
user_id = str(uuid.uuid4())
html_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Chatbot</title>
<style>
body {{
font-family: 'Arial', sans-serif;
background-color: #f4f4f9;
margin: 0;
padding: 0;
display: flex;
align-items: center;
justify-content: center;
min-height: 100vh;
}}
.container {{
background-color: #fff;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
overflow: hidden;
width: 400px;
max-width: 90%;
}}
h1 {{
color: #333;
text-align: center;
padding: 20px;
margin: 0;
background-color: #f8f9fa;
border-bottom: 1px solid #eee;
}}
#chatbox {{
height: 300px;
overflow-y: auto;
padding: 10px;
border-bottom: 1px solid #eee;
}}
.message {{
margin-bottom: 10px;
padding: 10px;
border-radius: 5px;
}}
.message.user {{
background-color: #e1f5fe;
text-align: right;
}}
.message.bot {{
background-color: #f1f1f1;
text-align: left;
}}
#input {{
display: flex;
padding: 10px;
}}
#input textarea {{
flex: 1;
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
margin-right: 10px;
}}
#input button {{
padding: 10px 20px;
border: none;
border-radius: 4px;
background-color: #007bff;
color: #fff;
cursor: pointer;
}}
#input button:hover {{
background-color: #0056b3;
}}
</style>
</head>
<body>
<div class="container">
<h1>Chatbot</h1>
<div id="chatbox"></div>
<div id="input">
<textarea id="message" rows="3" placeholder="Escribe tu mensaje aquí..."></textarea>
<button id="send">Enviar</button>
</div>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const messageInput = document.getElementById('message');
const sendButton = document.getElementById('send');
function appendMessage(text, sender) {{
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender);
messageDiv.textContent = text;
chatbox.appendChild(messageDiv);
chatbox.scrollTop = chatbox.scrollHeight;
}}
async function sendMessage() {{
const message = messageInput.value;
if (!message.trim()) return;
appendMessage(message, 'user');
messageInput.value = '';
const response = await fetch('/process', {{
method: 'POST',
headers: {{
'Content-Type': 'application/json'
}},
body: JSON.stringify({{
message: message,
user_id: '{user_id}'
}})
}});
const data = await response.json();
appendMessage(data.answer, 'bot');
}}
sendButton.addEventListener('click', sendMessage);
messageInput.addEventListener('keypress', (e) => {{
if (e.key === 'Enter' && !e.shiftKey) {{
e.preventDefault();
sendMessage();
}}
}});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code)
@spaces.GPU
def my_inference_function(input_data, output_data, mode, max_length, max_new_tokens, model_size):
print("xd")
# Add your inference logic here
# ...
def train_unified_model():
global tokenizer, unified_model
model_name = "unified_model"
model_path = f"gs://{GCS_BUCKET_NAME}/model_{model_name}"
training_args = TrainingArguments(
output_dir=f"gs://{GCS_BUCKET_NAME}/results",
per_device_train_batch_size=8,
num_train_epochs=3,
)
while True:
training_queue_path = f"gs://{GCS_BUCKET_NAME}/training_queue.json"
if bucket.blob("training_queue.json").exists():
blob = bucket.blob("training_queue.json")
training_queue_bytes = blob.download_as_bytes()
training_data_list = json.loads(training_queue_bytes)
if training_data_list:
training_data = training_data_list.pop(0)
new_data_bytes = json.dumps(training_data_list).encode("utf-8")
blob = bucket.blob("training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
tokenizer_data = training_data.get("tokenizers")
if tokenizer_data:
tokenizer_name = list(tokenizer_data.keys())[0]
existing_tokens = tokenizer.get_vocab()
new_tokens = tokenizer_data[tokenizer_name]
for token, id in new_tokens.items():
if token not in existing_tokens:
tokenizer.add_tokens([token])
data = training_data.get("data", [])
if data:
dataset = SyntheticDataset(tokenizer, data)
trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
trainer.train()
model_buffer = io.BytesIO()
torch.save(unified_model.state_dict(), model_buffer)
model_buffer.seek(0)
blob = bucket.blob(f"model_{model_name}")
blob.upload_from_file(model_buffer, content_type="application/octet-stream")
new_tokenizer_bytes = json.dumps(tokenizer.get_vocab()).encode("utf-8")
blob = bucket.blob(f"tokenizer_{tokenizer_name}.json")
blob.upload_from_string(new_tokenizer_bytes, content_type="application/json")
initial_data_path = f"gs://{GCS_BUCKET_NAME}/initial_data.json"
if bucket.blob("initial_data.json").exists():
blob = bucket.blob("initial_data.json")
initial_data_bytes = blob.download_as_bytes()
initial_data = json.loads(initial_data_bytes)
dataset = SyntheticDataset(tokenizer, initial_data)
trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
trainer.train()
model_buffer = io.BytesIO()
torch.save(unified_model.state_dict(), model_buffer)
model_buffer.seek(0)
blob = bucket.blob(f"model_{model_name}")
blob.upload_from_file(model_buffer, content_type="application/octet-stream")
def train_text_model():
global tokenizer, unified_model
model_name = "text_model"
model_path = f"gs://{GCS_BUCKET_NAME}/model_{model_name}"
training_args = TrainingArguments(
output_dir=f"gs://{GCS_BUCKET_NAME}/results",
per_device_train_batch_size=8,
num_train_epochs=3,
)
while True:
training_queue_path = f"gs://{GCS_BUCKET_NAME}/training_queue.json"
if bucket.blob("training_queue.json").exists():
blob = bucket.blob("training_queue.json")
training_queue_bytes = blob.download_as_bytes()
training_data_list = json.loads(training_queue_bytes)
if training_data_list:
training_data = training_data_list.pop(0)
new_data_bytes = json.dumps(training_data_list).encode("utf-8")
blob = bucket.blob("training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
tokenizer_data = training_data.get("tokenizers")
if tokenizer_data:
tokenizer_name = list(tokenizer_data.keys())[0]
existing_tokens = tokenizer.get_vocab()
new_tokens = tokenizer_data[tokenizer_name]
for token, id in new_tokens.items():
if token not in existing_tokens:
tokenizer.add_tokens([token])
data = training_data.get("data", [])
if data:
dataset = SyntheticDataset(tokenizer, data)
trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
trainer.train()
model_buffer = io.BytesIO()
torch.save(unified_model.state_dict(), model_buffer)
model_buffer.seek(0)
blob = bucket.blob(f"model_{model_name}")
blob.upload_from_file(model_buffer, content_type="application/octet-stream")
new_tokenizer_bytes = json.dumps(tokenizer.get_vocab()).encode("utf-8")
blob = bucket.blob(f"tokenizer_{tokenizer_name}.json")
blob.upload_from_string(new_tokenizer_bytes, content_type="application/json")
initial_data_path = f"gs://{GCS_BUCKET_NAME}/initial_data.json"
if bucket.blob("initial_data.json").exists():
blob = bucket.blob("initial_data.json")
initial_data_bytes = blob.download_as_bytes()
initial_data = json.loads(initial_data_bytes)
dataset = SyntheticDataset(tokenizer, initial_data)
trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
trainer.train()
model_buffer = io.BytesIO()
torch.save(unified_model.state_dict(), model_buffer)
model_buffer.seek(0)
blob = bucket.blob(f"model_{model_name}")
blob.upload_from_file(model_buffer, content_type="application/octet-stream")
def train_image_model():
global image_pipeline
while True:
image_training_queue_path = f"gs://{GCS_BUCKET_NAME}/image_training_queue.json"
if bucket.blob("image_training_queue.json").exists():
blob = bucket.blob("image_training_queue.json")
image_training_queue_bytes = blob.download_as_bytes()
image_training_data_list = json.loads(image_training_queue_bytes)
if image_training_data_list:
image_training_data = image_training_data_list.pop(0)
new_data_bytes = json.dumps(image_training_data_list).encode("utf-8")
blob = bucket.blob("image_training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
image_pipeline.model.to("cuda")
image_pipeline.model.train()
optimizer = torch.optim.Adam(image_pipeline.model.parameters(), lr=1e-5)
loss_fn = torch.nn.MSELoss()
for epoch in range(3):
for i in tqdm(range(len(image_training_data)), desc=f"Epoch {epoch+1}"):
image_prompt = image_training_data[i]
image = image_pipeline(
image_prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_sequence_length=256,
generator=torch.Generator("cuda").manual_seed(0)
).images[0]
image_tensor = torch.tensor(np.array(image)).unsqueeze(0).to("cuda")
target_tensor = torch.zeros_like(image_tensor)
outputs = image_pipeline.model(image_tensor)
loss = loss_fn(outputs, target_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Step {i+1}/{len(image_training_data)}, Loss: {loss.item()}")
def train_music_model():
global musicgen_tokenizer, musicgen_model
while True:
music_training_queue_path = f"gs://{GCS_BUCKET_NAME}/music_training_queue.json"
if bucket.blob("music_training_queue.json").exists():
blob = bucket.blob("music_training_queue.json")
music_training_queue_bytes = blob.download_as_bytes()
music_training_data_list = json.loads(music_training_queue_bytes)
if music_training_data_list:
music_training_data = music_training_data_list.pop(0)
new_data_bytes = json.dumps(music_training_data_list).encode("utf-8")
blob = bucket.blob("music_training_queue.json")
blob.upload_from_string(new_data_bytes, content_type="application/json")
inputs = musicgen_tokenizer(music_training_data, return_tensors="pt", padding=True).to("cuda")
musicgen_model.to("cuda")
musicgen_model.train()
optimizer = torch.optim.Adam(musicgen_model.parameters(), lr=5e-5)
loss_fn = torch.nn.CrossEntropyLoss()
for epoch in range(3):
for i in tqdm(range(len(inputs["input_ids"])), desc=f"Epoch {epoch+1}"):
outputs = musicgen_model(**inputs)
loss = loss_fn(outputs.logits, inputs['labels'])
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Step {i+1}/{len(inputs['input_ids'])}, Loss: {loss.item()}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
print("Iniciando entrenamiento automático del modelo unificado...")
auto_learn_process = multiprocessing.Process(target=train_unified_model)
auto_learn_process.start()
print("Iniciando entrenamiento automático del modelo de texto...")
auto_learn_process_2 = multiprocessing.Process(target=train_text_model)
auto_learn_process_2.start()
print("Iniciando entrenamiento automático del modelo de imagen...")
auto_learn_process_3 = multiprocessing.Process(target=train_image_model)
auto_learn_process_3.start()
print("Iniciando entrenamiento automático del modelo de música...")
auto_learn_process_4 = multiprocessing.Process(target=train_music_model)
auto_learn_process_4.start() |