Spaces:
Build error
Build error
File size: 13,665 Bytes
8f6558d 0121705 4df1f63 2495cd0 41c7921 0121705 8f6558d 4df1f63 8f6558d 0121705 8f6558d 0121705 8f6558d 4df1f63 8f6558d 0121705 8f6558d 4df1f63 41c7921 4df1f63 41c7921 8f6558d 5cbfd1a 4df1f63 8f6558d 0121705 8f6558d 0121705 8f6558d 0121705 8f6558d 0121705 8f6558d 0121705 8f6558d 0121705 8f6558d 579ff22 8f6558d 0121705 3f1ddfc 8f6558d 0121705 4df1f63 8f6558d 0121705 8f6558d 4df1f63 214f94e 4df1f63 8f6558d 214f94e 4df1f63 8f6558d 4df1f63 f73fd6d 4df1f63 706743c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import platform
import uuid
import shutil
from pydub import AudioSegment
import spaces
import torch
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from transformers import pipeline
from huggingface_hub import snapshot_download
from examples.get_examples import get_examples
from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from src.utils.init_path import init_path
checkpoint_path = 'checkpoints'
config_path = 'src/config'
device = "cuda" if torch.cuda.is_available() else "mps" if platform.system() == 'Darwin' else "cpu"
os.environ['TORCH_HOME'] = checkpoint_path
snapshot_download(repo_id='vinthony/SadTalker-V002rc',
local_dir=checkpoint_path, local_dir_use_symlinks=True)
app = FastAPI()
app.mount("/results", StaticFiles(directory="results"), name="results")
templates = Jinja2Templates(directory="templates")
def mp3_to_wav(mp3_filename, wav_filename, frame_rate):
AudioSegment.from_file(file=mp3_filename).set_frame_rate(
frame_rate).export(wav_filename, format="wav")
def get_pose_style_from_audio(audio_path):
emotion_recognizer = pipeline("sentiment-analysis")
results = emotion_recognizer(audio_path)
emotion = results[0]["label"]
pose_style_mapping = {
"POSITIVE": 15,
"NEGATIVE": 35,
"NEUTRAL": 0,
}
return pose_style_mapping.get(emotion, 0)
@spaces.GPU(duration=0)
def generate_video(source_image: str, driven_audio: str, preprocess: str = 'crop', still_mode: bool = False,
use_enhancer: bool = False, batch_size: int = 1, size: int = 256,
facerender: str = 'facevid2vid', exp_scale: float = 1.0, use_ref_video: bool = False,
ref_video: str = None, ref_info: str = None, use_idle_mode: bool = False,
length_of_audio: int = 0, use_blink: bool = True, result_dir: str = './results/') -> str:
sadtalker_paths = init_path(
checkpoint_path, config_path, size, False, preprocess)
audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
preprocess_model = CropAndExtract(sadtalker_paths, device)
animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device) if facerender == 'facevid2vid' and device != 'mps' \
else AnimateFromCoeff_PIRender(sadtalker_paths, device)
time_tag = str(uuid.uuid4())
save_dir = os.path.join(result_dir, time_tag)
os.makedirs(save_dir, exist_ok=True)
input_dir = os.path.join(save_dir, 'input')
os.makedirs(input_dir, exist_ok=True)
pic_path = os.path.join(input_dir, os.path.basename(source_image))
shutil.move(source_image, input_dir)
if driven_audio and os.path.isfile(driven_audio):
audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
if '.mp3' in audio_path:
mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
audio_path = audio_path.replace('.mp3', '.wav')
else:
shutil.move(driven_audio, input_dir)
elif use_idle_mode:
audio_path = os.path.join(
input_dir, 'idlemode_'+str(length_of_audio)+'.wav')
AudioSegment.silent(
duration=1000*length_of_audio).export(audio_path, format="wav")
else:
assert use_ref_video and ref_info == 'all'
if use_ref_video and ref_info == 'all':
ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
os.system(
f"ffmpeg -y -hide_banner -loglevel error -i {ref_video} {audio_path}")
ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
os.makedirs(ref_video_frame_dir, exist_ok=True)
ref_video_coeff_path, _, _ = preprocess_model.generate(
ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
else:
ref_video_coeff_path = None
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(
pic_path, first_frame_dir, preprocess, True, size)
if first_coeff_path is None:
raise AttributeError("No face is detected")
ref_pose_coeff_path, ref_eyeblink_coeff_path = None, None
if use_ref_video:
if ref_info == 'pose':
ref_pose_coeff_path = ref_video_coeff_path
elif ref_info == 'blink':
ref_eyeblink_coeff_path = ref_video_coeff_path
elif ref_info == 'pose+blink':
ref_pose_coeff_path = ref_eyeblink_coeff_path = ref_video_coeff_path
else:
ref_pose_coeff_path = ref_eyeblink_coeff_path = None
if use_ref_video and ref_info == 'all':
coeff_path = ref_video_coeff_path
else:
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path,
still=still_mode, idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink)
pose_style = get_pose_style_from_audio(audio_path)
coeff_path = audio_to_coeff.generate(
batch, save_dir, pose_style, ref_pose_coeff_path)
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode,
preprocess=preprocess, size=size, expression_scale=exp_scale, facemodel=facerender)
return_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None,
preprocess=preprocess, img_size=size)
video_name = data['video_name']
print(f'The generated video is named {video_name} in {save_dir}')
return return_path
@app.post("/generate")
async def generate_video_api(source_image: UploadFile = File(...), driven_audio: UploadFile = File(None),
preprocess: str = Form('crop'), still_mode: bool = Form(False),
use_enhancer: bool = Form(False), batch_size: int = Form(1), size: int = Form(256),
facerender: str = Form('facevid2vid'), exp_scale: float = Form(1.0),
use_ref_video: bool = Form(False), ref_video: UploadFile = File(None),
ref_info: str = Form(None), use_idle_mode: bool = Form(False),
length_of_audio: int = Form(0), use_blink: bool = Form(True), result_dir: str = Form('./results/')):
temp_source_image_path = f"temp/{source_image.filename}"
os.makedirs("temp", exist_ok=True)
with open(temp_source_image_path, "wb") as buffer:
shutil.copyfileobj(source_image.file, buffer)
if driven_audio is not None:
temp_driven_audio_path = f"temp/{driven_audio.filename}"
with open(temp_driven_audio_path, "wb") as buffer:
shutil.copyfileobj(driven_audio.file, buffer)
else:
temp_driven_audio_path = None
if ref_video is not None:
temp_ref_video_path = f"temp/{ref_video.filename}"
with open(temp_ref_video_path, "wb") as buffer:
shutil.copyfileobj(ref_video.file, buffer)
else:
temp_ref_video_path = None
video_path = generate_video(
source_image=temp_source_image_path,
driven_audio=temp_driven_audio_path,
preprocess=preprocess,
still_mode=still_mode,
use_enhancer=use_enhancer,
batch_size=batch_size,
size=size,
facerender=facerender,
exp_scale=exp_scale,
use_ref_video=use_ref_video,
ref_video=temp_ref_video_path,
ref_info=ref_info,
use_idle_mode=use_idle_mode,
length_of_audio=length_of_audio,
use_blink=use_blink,
result_dir=result_dir
)
shutil.rmtree("temp")
return FileResponse(video_path)
@app.get("/")
async def root(request):
return html
# HTML Template (`templates/index.html`)
html = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>SadTalker API</title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/jquery.slim.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/popper.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js"></script>
</head>
<body>
<div class="container mt-5">
<h1>SadTalker API</h1>
<form method="POST" action="/generate" enctype="multipart/form-data">
<div class="form-group">
<label for="source_image">Source Image:</label>
<input type="file" class="form-control-file" id="source_image" name="source_image" required>
</div>
<div class="form-group">
<label for="driven_audio">Driving Audio:</label>
<input type="file" class="form-control-file" id="driven_audio" name="driven_audio">
</div>
<div class="form-group">
<label for="preprocess">Preprocess:</label>
<select class="form-control" id="preprocess" name="preprocess">
<option value="crop">Crop</option>
<option value="resize">Resize</option>
<option value="full">Full</option>
<option value="extcrop">ExtCrop</option>
<option value="extfull">ExtFull</option>
</select>
</div>
<div class="form-check">
<input type="checkbox" class="form-check-input" id="still_mode" name="still_mode">
<label class="form-check-label" for="still_mode">Still Mode</label>
</div>
<div class="form-check">
<input type="checkbox" class="form-check-input" id="use_enhancer" name="use_enhancer">
<label class="form-check-label" for="use_enhancer">Use GFPGAN Enhancer</label>
</div>
<div class="form-group">
<label for="batch_size">Batch Size:</label>
<input type="number" class="form-control" id="batch_size" name="batch_size" min="1" max="10" value="1">
</div>
<div class="form-group">
<label for="size">Face Model Resolution:</label>
<select class="form-control" id="size" name="size">
<option value="256">256</option>
<option value="512">512</option>
</select>
</div>
<div class="form-group">
<label for="facerender">Face Render:</label>
<select class="form-control" id="facerender" name="facerender">
<option value="facevid2vid">FaceVid2Vid</option>
<option value="pirender">PIRender</option>
</select>
</div>
<div class="form-group">
<label for="exp_scale">Expression Scale:</label>
<input type="number" class="form-control" id="exp_scale" name="exp_scale" min="0" max="3" step="0.1" value="1.0">
</div>
<div class="form-check">
<input type="checkbox" class="form-check-input" id="use_ref_video" name="use_ref_video">
<label class="form-check-label" for="use_ref_video">Use Reference Video</label>
</div>
<div class="form-group">
<label for="ref_video">Reference Video:</label>
<input type="file" class="form-control-file" id="ref_video" name="ref_video">
</div>
<div class="form-group">
<label for="ref_info">Reference Video Information:</label>
<select class="form-control" id="ref_info" name="ref_info">
<option value="pose">Pose</option>
<option value="blink">Blink</option>
<option value="pose+blink">Pose + Blink</option>
<option value="all">All</option>
</select>
</div>
<div class="form-check">
<input type="checkbox" class="form-check-input" id="use_idle_mode" name="use_idle_mode">
<label class="form-check-label" for="use_idle_mode">Use Idle Animation</label>
</div>
<div class="form-group">
<label for="length_of_audio">Length of Audio (seconds):</label>
<input type="number" class="form-control" id="length_of_audio" name="length_of_audio" min="0" value="0">
</div>
<div class="form-check">
<input type="checkbox" class="form-check-input" id="use_blink" name="use_blink" checked>
<label class="form-check-label" for="use_blink">Use Eye Blink</label>
</div>
<button type="submit" class="btn btn-primary">Generate</button>
</form>
</div>
</body>
</html>
"""
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |