import gradio as gr import torch from diffusers import DiffusionPipeline import imageio import tempfile # Load the lighter 5B model pipe = DiffusionPipeline.from_pretrained( "Wan-AI/Wan2.2-TI2V-5B-Diffusers", torch_dtype=torch.float16 ).to("cuda") def generate_video(prompt, steps=25): video = pipe(prompt, num_inference_steps=steps).videos[0] tmpfile = tempfile.NamedTemporaryFile(suffix=".gif", delete=False) imageio.mimsave(tmpfile.name, video, fps=8) return tmpfile.name demo = gr.Interface( fn=generate_video, inputs=[gr.Textbox(label="Prompt"), gr.Slider(1, 50, value=25, label="Steps")], outputs=gr.Video(label="Generated Video") ) if __name__ == "__main__": demo.launch()