Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from crawl4ai import AsyncWebCrawler
|
6 |
+
from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig
|
7 |
+
|
8 |
+
from langchain_core.documents import Document
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
|
11 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
12 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain_community.vectorstores import Chroma
|
14 |
+
|
15 |
+
# Load API keys from Space Secrets
|
16 |
+
os.environ["HUGGINGFACEHUB_API_KEY"] = st.secrets["hf"]
|
17 |
+
os.environ["HF_TOKEN"] = st.secrets["hf"]
|
18 |
+
|
19 |
+
async def run_pipeline(url: str, query: str):
|
20 |
+
# 1οΈβ£ Crawler setup
|
21 |
+
browser_config = BrowserConfig()
|
22 |
+
run_config = CrawlerRunConfig()
|
23 |
+
|
24 |
+
async with AsyncWebCrawler(config=browser_config) as crawler:
|
25 |
+
result = await crawler.arun(url=url, config=run_config)
|
26 |
+
|
27 |
+
# 2οΈβ£ LangChain doc + split
|
28 |
+
doc = Document(page_content=result.markdown.raw_markdown)
|
29 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
30 |
+
chunks = text_splitter.split_documents([doc])
|
31 |
+
|
32 |
+
# 3οΈβ£ Embedding + Chroma
|
33 |
+
emb = HuggingFaceEmbeddings(model="avsolatorio/GIST-small-Embedding-v0")
|
34 |
+
cb = Chroma(embedding_function=emb)
|
35 |
+
|
36 |
+
cb.add_documents(chunks)
|
37 |
+
|
38 |
+
# 4οΈβ£ Similarity search
|
39 |
+
docs = cb.similarity_search(query, k=3)
|
40 |
+
|
41 |
+
# 5οΈβ£ Llama3 via Nebius
|
42 |
+
llama_model = HuggingFaceEndpoint(
|
43 |
+
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
44 |
+
provider="nebius",
|
45 |
+
temperature=0.7,
|
46 |
+
max_new_tokens=300,
|
47 |
+
task="conversational"
|
48 |
+
)
|
49 |
+
|
50 |
+
llama = ChatHuggingFace(
|
51 |
+
llm=llama_model,
|
52 |
+
repo_id="meta-llama/Llama-3.1-8B-Instruct",
|
53 |
+
provider="nebius",
|
54 |
+
temperature=0.7,
|
55 |
+
max_new_tokens=300,
|
56 |
+
task="conversational"
|
57 |
+
)
|
58 |
+
|
59 |
+
response = llama.invoke(
|
60 |
+
f"Context: {docs[0].page_content}\n\nQuestion: {query}"
|
61 |
+
)
|
62 |
+
return response.content
|
63 |
+
|
64 |
+
# Streamlit UI
|
65 |
+
st.title("ππ Ask Any Website with Llama3")
|
66 |
+
st.write("Enter a URL and your question β this app crawls the site and answers using Llama3!")
|
67 |
+
|
68 |
+
url = st.text_input("π Website URL", placeholder="https://www.example.com")
|
69 |
+
query = st.text_input("π¬ Your Question", placeholder="What is this website about?")
|
70 |
+
|
71 |
+
if st.button("π Crawl & Answer"):
|
72 |
+
if not url.strip() or not query.strip():
|
73 |
+
st.warning("β Please enter both a URL and a question.")
|
74 |
+
else:
|
75 |
+
with st.spinner("πΈοΈ Crawling website and generating answer..."):
|
76 |
+
result = asyncio.run(run_pipeline(url, query))
|
77 |
+
st.success(f"β
**Answer:** {result}")
|