ved1beta commited on
Commit
ef13ec4
·
1 Parent(s): 44157d6
Files changed (2) hide show
  1. README.md +26 -0
  2. app.py +6 -2
README.md CHANGED
@@ -11,3 +11,29 @@ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+ # PaliGemma Image Captioning Gradio App
15
+
16
+ ## Deployment Instructions
17
+
18
+ 1. Create a new Hugging Face Space
19
+ 2. Choose Python as the SDK
20
+ 3. Select 16GB CPU hardware
21
+ 4. Upload the following files:
22
+ - `app.py`
23
+ - `requirements.txt`
24
+
25
+ ### HuggingFace Access Token
26
+
27
+ 1. Go to HuggingFace settings
28
+ 2. Create a new access token with "Read" permissions
29
+ 3. Add the token as a secret named `HF_TOKEN` in your Space settings
30
+
31
+ ### Features
32
+ - Multi-language image captioning
33
+ - Upload custom images
34
+ - Example images included
35
+ - Supports English, Spanish, French, German captions
36
+
37
+ ## Model Details
38
+ - Model: google/paligemma-3b-mix-224
39
+ - Task: Multilingual Image Captioning
app.py CHANGED
@@ -1,13 +1,17 @@
 
1
  import gradio as gr
2
  from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
3
  from PIL import Image
4
  import torch
5
  import requests
6
 
 
 
 
7
  # Load the model and processor
8
  model_id = "google/paligemma-3b-mix-224"
9
- model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, token=True).eval()
10
- processor = AutoProcessor.from_pretrained(model_id, token=True)
11
 
12
  # Supported languages and example prompts
13
  LANGUAGES = {
 
1
+ import os
2
  import gradio as gr
3
  from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
4
  from PIL import Image
5
  import torch
6
  import requests
7
 
8
+ # Get token from environment variable
9
+ HF_TOKEN = os.getenv('HF_TOKEN')
10
+
11
  # Load the model and processor
12
  model_id = "google/paligemma-3b-mix-224"
13
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, token=HF_TOKEN).eval()
14
+ processor = AutoProcessor.from_pretrained(model_id, token=HF_TOKEN)
15
 
16
  # Supported languages and example prompts
17
  LANGUAGES = {