Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,55 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
import gradio as gr
|
4 |
-
import subprocess
|
5 |
import json
|
6 |
-
import torch
|
7 |
from pathlib import Path
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
os.
|
|
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def setup_environment():
|
22 |
-
"""Setup environment
|
23 |
-
# Install additional dependencies if needed
|
24 |
dependencies = [
|
25 |
"sageattention==1.0.6",
|
26 |
"insightface",
|
@@ -38,55 +67,72 @@ def setup_environment():
|
|
38 |
|
39 |
for dep in dependencies:
|
40 |
try:
|
41 |
-
module_name = dep.split("==")[0].split(">=")[0]
|
42 |
-
|
43 |
-
except
|
44 |
-
print(f"
|
45 |
-
subprocess
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def download_essential_models():
|
49 |
-
"""Pre-download
|
50 |
try:
|
51 |
from huggingface_hub import snapshot_download
|
52 |
|
53 |
-
print("
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
print("
|
72 |
|
|
|
|
|
73 |
except Exception as e:
|
74 |
-
print(f"Model download
|
75 |
-
print("Models will be downloaded on-demand during first use.")
|
76 |
|
77 |
def create_hf_config():
|
78 |
-
"""Create
|
79 |
config = {
|
80 |
"model_settings": {
|
81 |
-
"profile": 3,
|
82 |
"quantize_transformer": True,
|
83 |
"attention_mode": "sage",
|
84 |
-
"compile": False,
|
85 |
"teacache": "2.0"
|
86 |
},
|
87 |
"avatar_settings": {
|
88 |
-
"max_frames": 120,
|
89 |
-
"resolution": "512x512",
|
90 |
"emotion_control": True,
|
91 |
"multi_character": True
|
92 |
},
|
@@ -98,182 +144,333 @@ def create_hf_config():
|
|
98 |
},
|
99 |
"audio_processing": {
|
100 |
"sample_rate": 16000,
|
101 |
-
"max_duration": 15,
|
102 |
"supported_formats": ["wav", "mp3", "m4a"]
|
103 |
}
|
104 |
}
|
105 |
|
106 |
-
config_path = "
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
|
110 |
return config
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
class WanGPInterface:
|
113 |
-
"""WanGP Interface
|
114 |
|
115 |
def __init__(self, config):
|
116 |
-
self.config = config
|
117 |
-
self.device = "
|
|
|
|
|
|
|
|
|
|
|
118 |
self.models_loaded = False
|
119 |
|
120 |
def load_models(self):
|
121 |
-
"""Load models
|
122 |
if self.models_loaded:
|
123 |
-
return
|
124 |
|
125 |
try:
|
126 |
-
print("Loading Hunyuan Video Avatar models...")
|
127 |
-
#
|
128 |
-
|
|
|
129 |
self.models_loaded = True
|
130 |
-
print("β
Models loaded successfully!")
|
|
|
131 |
except Exception as e:
|
132 |
-
print(f"
|
133 |
-
|
|
|
134 |
|
135 |
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
|
|
|
136 |
try:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
# TODO: thay bαΊ±ng ΔoαΊ‘n code gα»i mΓ΄ hΓ¬nh HunyuanAvatar thα»±c sα»±
|
143 |
-
# GiαΊ£ sα» video ΔΓ£ Δược lΖ°u vΓ o `output_video_path`
|
144 |
-
|
145 |
-
return output_video_path, "β
Video generated successfully!"
|
146 |
-
|
147 |
except Exception as e:
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
def generate_video(self, prompt, duration=5, resolution="512x512"):
|
152 |
-
"""Generate video from text
|
153 |
try:
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
#
|
157 |
-
|
|
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
-
|
|
|
|
|
161 |
|
162 |
def create_gradio_interface(wangp_interface):
|
163 |
-
"""Create Gradio interface
|
164 |
|
165 |
-
|
166 |
-
gr.
|
167 |
-
|
168 |
-
<
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
with gr.
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
value="512x512",
|
221 |
-
label="Resolution"
|
222 |
-
)
|
223 |
-
generate_video_btn = gr.Button("Generate Video", variant="primary")
|
224 |
-
|
225 |
-
with gr.Column():
|
226 |
-
video_output = gr.Video(label="Generated Video")
|
227 |
-
video_status = gr.Textbox(label="Status", interactive=False)
|
228 |
|
229 |
-
|
230 |
-
generate_avatar_btn.click(
|
231 |
-
fn=wangp_interface.generate_avatar_video,
|
232 |
-
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
|
233 |
-
outputs=[avatar_output, avatar_status] # trαΊ£ ra cαΊ£ video vΓ status
|
234 |
-
)
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
240 |
)
|
241 |
-
|
242 |
-
gr.HTML("""
|
243 |
-
<div style="text-align: center; margin-top: 20px; color: #666;">
|
244 |
-
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
|
245 |
-
</div>
|
246 |
-
""")
|
247 |
-
|
248 |
-
return demo
|
249 |
|
250 |
-
|
|
|
251 |
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...")
|
252 |
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
# Download models in background
|
260 |
try:
|
|
|
261 |
download_essential_models()
|
262 |
except Exception as e:
|
263 |
-
print(f"Model download
|
264 |
-
|
265 |
-
# Initialize WanGP interface
|
266 |
-
wangp_interface = WanGPInterface(config)
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
3 |
import json
|
|
|
4 |
from pathlib import Path
|
5 |
+
import tempfile
|
6 |
+
import shutil
|
7 |
|
8 |
+
# Safe imports with fallbacks
|
9 |
+
try:
|
10 |
+
import gradio as gr
|
11 |
+
except ImportError:
|
12 |
+
print("Installing gradio...")
|
13 |
+
os.system(f"{sys.executable} -m pip install gradio")
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
try:
|
17 |
+
import subprocess
|
18 |
+
except ImportError:
|
19 |
+
subprocess = None
|
20 |
+
|
21 |
+
try:
|
22 |
+
import torch
|
23 |
+
HAS_TORCH = True
|
24 |
+
except ImportError:
|
25 |
+
HAS_TORCH = False
|
26 |
+
print("PyTorch not available, using CPU mode")
|
27 |
|
28 |
+
# Ensure temp directories exist
|
29 |
+
TEMP_DIR = tempfile.gettempdir()
|
30 |
+
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache")
|
31 |
+
os.makedirs(HF_CACHE_DIR, exist_ok=True)
|
32 |
|
33 |
+
# Set environment variables safely
|
34 |
+
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
|
35 |
+
os.environ["GRADIO_SERVER_PORT"] = "7860"
|
36 |
+
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR
|
37 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR
|
38 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
39 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
40 |
|
41 |
+
def safe_import(module_name, package_name=None):
|
42 |
+
"""Safely import a module with fallback"""
|
43 |
+
if package_name is None:
|
44 |
+
package_name = module_name
|
45 |
+
try:
|
46 |
+
return __import__(module_name.replace("-", "_"))
|
47 |
+
except ImportError:
|
48 |
+
print(f"Module {module_name} not found, functionality limited")
|
49 |
+
return None
|
50 |
+
|
51 |
def setup_environment():
|
52 |
+
"""Setup environment with error handling"""
|
|
|
53 |
dependencies = [
|
54 |
"sageattention==1.0.6",
|
55 |
"insightface",
|
|
|
67 |
|
68 |
for dep in dependencies:
|
69 |
try:
|
70 |
+
module_name = dep.split("==")[0].split(">=")[0].split("[")[0]
|
71 |
+
safe_import(module_name)
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Could not process {dep}: {e}")
|
74 |
+
if subprocess:
|
75 |
+
try:
|
76 |
+
subprocess.run(
|
77 |
+
[sys.executable, "-m", "pip", "install", dep],
|
78 |
+
check=False,
|
79 |
+
capture_output=True,
|
80 |
+
timeout=30
|
81 |
+
)
|
82 |
+
except Exception as install_error:
|
83 |
+
print(f"Failed to install {dep}: {install_error}")
|
84 |
|
85 |
def download_essential_models():
|
86 |
+
"""Pre-download models with full error handling"""
|
87 |
try:
|
88 |
from huggingface_hub import snapshot_download
|
89 |
|
90 |
+
print("Attempting to download Hunyuan Video Avatar models...")
|
91 |
|
92 |
+
try:
|
93 |
+
snapshot_download(
|
94 |
+
repo_id="tencent/HunyuanVideo-Avatar",
|
95 |
+
cache_dir=HF_CACHE_DIR,
|
96 |
+
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
|
97 |
+
ignore_patterns=["*.mp4", "*.avi", "*.mov"],
|
98 |
+
resume_download=True,
|
99 |
+
max_workers=2
|
100 |
+
)
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Could not download HunyuanVideo-Avatar: {e}")
|
103 |
|
104 |
+
try:
|
105 |
+
snapshot_download(
|
106 |
+
repo_id="tencent/HunyuanVideo",
|
107 |
+
cache_dir=HF_CACHE_DIR,
|
108 |
+
allow_patterns=["*.safetensors", "*.json", "*.txt"],
|
109 |
+
ignore_patterns=["*.mp4", "*.avi"],
|
110 |
+
resume_download=True,
|
111 |
+
max_workers=2
|
112 |
+
)
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Could not download HunyuanVideo: {e}")
|
115 |
|
116 |
+
print("Model download attempt completed")
|
117 |
|
118 |
+
except ImportError:
|
119 |
+
print("huggingface_hub not available, skipping model download")
|
120 |
except Exception as e:
|
121 |
+
print(f"Model download error: {e}")
|
|
|
122 |
|
123 |
def create_hf_config():
|
124 |
+
"""Create config with error handling"""
|
125 |
config = {
|
126 |
"model_settings": {
|
127 |
+
"profile": 3,
|
128 |
"quantize_transformer": True,
|
129 |
"attention_mode": "sage",
|
130 |
+
"compile": False,
|
131 |
"teacache": "2.0"
|
132 |
},
|
133 |
"avatar_settings": {
|
134 |
+
"max_frames": 120,
|
135 |
+
"resolution": "512x512",
|
136 |
"emotion_control": True,
|
137 |
"multi_character": True
|
138 |
},
|
|
|
144 |
},
|
145 |
"audio_processing": {
|
146 |
"sample_rate": 16000,
|
147 |
+
"max_duration": 15,
|
148 |
"supported_formats": ["wav", "mp3", "m4a"]
|
149 |
}
|
150 |
}
|
151 |
|
152 |
+
config_path = os.path.join(TEMP_DIR, "hf_config.json")
|
153 |
+
try:
|
154 |
+
with open(config_path, "w", encoding='utf-8') as f:
|
155 |
+
json.dump(config, f, indent=2)
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Could not save config: {e}")
|
158 |
+
config_path = None
|
159 |
|
160 |
return config
|
161 |
|
162 |
+
def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512):
|
163 |
+
"""Create a dummy video file for testing"""
|
164 |
+
try:
|
165 |
+
import numpy as np
|
166 |
+
import cv2
|
167 |
+
|
168 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
169 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
170 |
+
|
171 |
+
for i in range(duration * fps):
|
172 |
+
# Create gradient frame
|
173 |
+
frame = np.ones((height, width, 3), dtype=np.uint8) * 50
|
174 |
+
text = f"Frame {i+1}"
|
175 |
+
cv2.putText(frame, text, (width//4, height//2),
|
176 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
177 |
+
out.write(frame)
|
178 |
+
|
179 |
+
out.release()
|
180 |
+
return True
|
181 |
+
except Exception as e:
|
182 |
+
print(f"Could not create video with OpenCV: {e}")
|
183 |
+
# Create empty file as fallback
|
184 |
+
try:
|
185 |
+
with open(output_path, 'wb') as f:
|
186 |
+
f.write(b'dummy video content')
|
187 |
+
return True
|
188 |
+
except:
|
189 |
+
return False
|
190 |
+
|
191 |
class WanGPInterface:
|
192 |
+
"""WanGP Interface with full error handling"""
|
193 |
|
194 |
def __init__(self, config):
|
195 |
+
self.config = config or {}
|
196 |
+
self.device = "cpu"
|
197 |
+
if HAS_TORCH:
|
198 |
+
try:
|
199 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
200 |
+
except:
|
201 |
+
self.device = "cpu"
|
202 |
self.models_loaded = False
|
203 |
|
204 |
def load_models(self):
|
205 |
+
"""Load models with error handling"""
|
206 |
if self.models_loaded:
|
207 |
+
return True
|
208 |
|
209 |
try:
|
210 |
+
print("Loading Hunyuan Video Avatar models (placeholder)...")
|
211 |
+
# Placeholder for actual model loading
|
212 |
+
import time
|
213 |
+
time.sleep(0.5) # Simulate loading
|
214 |
self.models_loaded = True
|
215 |
+
print("β
Models loaded successfully (simulated)!")
|
216 |
+
return True
|
217 |
except Exception as e:
|
218 |
+
print(f"Error in model loading: {e}")
|
219 |
+
self.models_loaded = False
|
220 |
+
return False
|
221 |
|
222 |
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
|
223 |
+
"""Generate avatar video with comprehensive error handling"""
|
224 |
try:
|
225 |
+
# Validate inputs
|
226 |
+
if audio_file is None:
|
227 |
+
return None, "β Error: No audio file provided"
|
228 |
+
|
229 |
+
if avatar_image is None:
|
230 |
+
return None, "β Error: No avatar image provided"
|
231 |
+
|
232 |
+
# Ensure model is loaded
|
233 |
+
if not self.load_models():
|
234 |
+
print("Models not loaded, using dummy generation")
|
235 |
+
|
236 |
+
# Create output path
|
237 |
+
output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4"
|
238 |
+
output_path = os.path.join(TEMP_DIR, output_filename)
|
239 |
+
|
240 |
+
# Create dummy video
|
241 |
+
if create_dummy_video(output_path, duration=5):
|
242 |
+
if os.path.exists(output_path):
|
243 |
+
return output_path, "β
Video generated successfully (demo mode)!"
|
244 |
+
else:
|
245 |
+
return None, "β Error: Failed to create output file"
|
246 |
+
else:
|
247 |
+
return None, "β Error: Video generation failed"
|
248 |
|
|
|
|
|
|
|
|
|
|
|
249 |
except Exception as e:
|
250 |
+
error_msg = f"β Error in avatar generation: {str(e)}"
|
251 |
+
print(error_msg)
|
252 |
+
return None, error_msg
|
253 |
|
254 |
def generate_video(self, prompt, duration=5, resolution="512x512"):
|
255 |
+
"""Generate video from text with error handling"""
|
256 |
try:
|
257 |
+
if not prompt:
|
258 |
+
return "β Error: No prompt provided"
|
259 |
+
|
260 |
+
# Parse resolution
|
261 |
+
try:
|
262 |
+
width, height = map(int, resolution.split('x'))
|
263 |
+
except:
|
264 |
+
width, height = 512, 512
|
265 |
|
266 |
+
# Ensure model is loaded
|
267 |
+
if not self.load_models():
|
268 |
+
print("Models not loaded, using dummy generation")
|
269 |
|
270 |
+
# Create output path
|
271 |
+
output_filename = f"video_{os.getpid()}_{id(self)}.mp4"
|
272 |
+
output_path = os.path.join(TEMP_DIR, output_filename)
|
273 |
+
|
274 |
+
# Create dummy video
|
275 |
+
if create_dummy_video(output_path, duration=int(duration), width=width, height=height):
|
276 |
+
if os.path.exists(output_path):
|
277 |
+
return output_path, f"β
Generated video for prompt: {prompt[:50]}..."
|
278 |
+
else:
|
279 |
+
return None, "β Error: Failed to create output file"
|
280 |
+
else:
|
281 |
+
return None, "β Error: Video generation failed"
|
282 |
+
|
283 |
except Exception as e:
|
284 |
+
error_msg = f"β Error in video generation: {str(e)}"
|
285 |
+
print(error_msg)
|
286 |
+
return None, error_msg
|
287 |
|
288 |
def create_gradio_interface(wangp_interface):
|
289 |
+
"""Create Gradio interface with error handling"""
|
290 |
|
291 |
+
try:
|
292 |
+
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
|
293 |
+
gr.HTML("""
|
294 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
295 |
+
<h1>π WanGP v6.3 - Hunyuan Video Avatar</h1>
|
296 |
+
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
|
297 |
+
<p style="color: orange;">β οΈ Running in Demo Mode - Using placeholder outputs</p>
|
298 |
+
</div>
|
299 |
+
""")
|
300 |
+
|
301 |
+
with gr.Tabs():
|
302 |
+
# Avatar Generation Tab
|
303 |
+
with gr.TabItem("π Avatar Generation"):
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column():
|
306 |
+
audio_input = gr.Audio(
|
307 |
+
label="Audio Input",
|
308 |
+
type="filepath"
|
309 |
+
)
|
310 |
+
avatar_image = gr.Image(
|
311 |
+
label="Avatar Image",
|
312 |
+
type="filepath"
|
313 |
+
)
|
314 |
+
emotion_control = gr.Dropdown(
|
315 |
+
choices=["neutral", "happy", "sad", "angry", "surprised"],
|
316 |
+
value="neutral",
|
317 |
+
label="Emotion Control"
|
318 |
+
)
|
319 |
+
avatar_prompt = gr.Textbox(
|
320 |
+
label="Additional Prompt (Optional)",
|
321 |
+
placeholder="Describe additional details...",
|
322 |
+
value=""
|
323 |
+
)
|
324 |
+
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
|
325 |
+
|
326 |
+
with gr.Column():
|
327 |
+
avatar_output = gr.Video(label="Generated Avatar Video")
|
328 |
+
avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready")
|
329 |
+
|
330 |
+
# Text-to-Video Tab
|
331 |
+
with gr.TabItem("πΉ Text to Video"):
|
332 |
+
with gr.Row():
|
333 |
+
with gr.Column():
|
334 |
+
video_prompt = gr.Textbox(
|
335 |
+
label="Video Prompt",
|
336 |
+
placeholder="Describe the video you want to generate...",
|
337 |
+
lines=3,
|
338 |
+
value=""
|
339 |
+
)
|
340 |
+
duration_slider = gr.Slider(
|
341 |
+
minimum=2,
|
342 |
+
maximum=10,
|
343 |
+
value=5,
|
344 |
+
step=1,
|
345 |
+
label="Duration (seconds)"
|
346 |
+
)
|
347 |
+
resolution_dropdown = gr.Dropdown(
|
348 |
+
choices=["512x512", "768x768", "1024x1024"],
|
349 |
+
value="512x512",
|
350 |
+
label="Resolution"
|
351 |
+
)
|
352 |
+
generate_video_btn = gr.Button("Generate Video", variant="primary")
|
353 |
+
|
354 |
+
with gr.Column():
|
355 |
+
video_output = gr.Video(label="Generated Video")
|
356 |
+
video_status = gr.Textbox(label="Status", interactive=False, value="Ready")
|
357 |
+
|
358 |
+
# Event handlers with error handling
|
359 |
+
def safe_avatar_generation(*args):
|
360 |
+
try:
|
361 |
+
return wangp_interface.generate_avatar_video(*args)
|
362 |
+
except Exception as e:
|
363 |
+
return None, f"β Unexpected error: {str(e)}"
|
364 |
+
|
365 |
+
def safe_video_generation(*args):
|
366 |
+
try:
|
367 |
+
result = wangp_interface.generate_video(*args)
|
368 |
+
if isinstance(result, tuple):
|
369 |
+
return result
|
370 |
+
else:
|
371 |
+
return None, result
|
372 |
+
except Exception as e:
|
373 |
+
return None, f"β Unexpected error: {str(e)}"
|
374 |
|
375 |
+
generate_avatar_btn.click(
|
376 |
+
fn=safe_avatar_generation,
|
377 |
+
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
|
378 |
+
outputs=[avatar_output, avatar_status]
|
379 |
+
)
|
380 |
+
|
381 |
+
generate_video_btn.click(
|
382 |
+
fn=safe_video_generation,
|
383 |
+
inputs=[video_prompt, duration_slider, resolution_dropdown],
|
384 |
+
outputs=[video_output, video_status]
|
385 |
+
)
|
386 |
+
|
387 |
+
gr.HTML("""
|
388 |
+
<div style="text-align: center; margin-top: 20px; color: #666;">
|
389 |
+
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
|
390 |
+
<p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p>
|
391 |
+
</div>
|
392 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
+
except Exception as e:
|
397 |
+
print(f"Error creating Gradio interface: {e}")
|
398 |
+
# Return minimal interface
|
399 |
+
demo = gr.Interface(
|
400 |
+
fn=lambda x: f"Error: {str(e)}",
|
401 |
+
inputs="text",
|
402 |
+
outputs="text",
|
403 |
+
title="WanGP v6.3 - Error State"
|
404 |
)
|
405 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
+
def main():
|
408 |
+
"""Main function with comprehensive error handling"""
|
409 |
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...")
|
410 |
|
411 |
+
try:
|
412 |
+
# Setup environment
|
413 |
+
setup_environment()
|
414 |
+
except Exception as e:
|
415 |
+
print(f"Environment setup warning: {e}")
|
416 |
|
417 |
+
try:
|
418 |
+
# Create configuration
|
419 |
+
config = create_hf_config()
|
420 |
+
except Exception as e:
|
421 |
+
print(f"Config creation warning: {e}")
|
422 |
+
config = {}
|
423 |
|
|
|
424 |
try:
|
425 |
+
# Download models in background
|
426 |
download_essential_models()
|
427 |
except Exception as e:
|
428 |
+
print(f"Model download skipped: {e}")
|
|
|
|
|
|
|
429 |
|
430 |
+
try:
|
431 |
+
# Initialize WanGP interface
|
432 |
+
wangp_interface = WanGPInterface(config)
|
433 |
+
except Exception as e:
|
434 |
+
print(f"Interface initialization error: {e}")
|
435 |
+
# Create minimal interface
|
436 |
+
class MinimalInterface:
|
437 |
+
def __init__(self):
|
438 |
+
self.config = {}
|
439 |
+
def generate_avatar_video(self, *args):
|
440 |
+
return None, "Service temporarily unavailable"
|
441 |
+
def generate_video(self, *args):
|
442 |
+
return None, "Service temporarily unavailable"
|
443 |
+
wangp_interface = MinimalInterface()
|
444 |
|
445 |
+
try:
|
446 |
+
# Create and launch Gradio interface
|
447 |
+
demo = create_gradio_interface(wangp_interface)
|
448 |
+
|
449 |
+
print("β
Setup complete! Launching application...")
|
450 |
+
|
451 |
+
# Launch with error handling
|
452 |
+
demo.launch(
|
453 |
+
server_name="0.0.0.0",
|
454 |
+
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
|
455 |
+
share=False,
|
456 |
+
debug=False,
|
457 |
+
show_error=True,
|
458 |
+
prevent_thread_lock=False
|
459 |
+
)
|
460 |
+
except Exception as e:
|
461 |
+
print(f"β Failed to launch Gradio: {e}")
|
462 |
+
print("Attempting fallback launch...")
|
463 |
+
try:
|
464 |
+
# Minimal fallback
|
465 |
+
import gradio as gr
|
466 |
+
gr.Interface(
|
467 |
+
fn=lambda x: "System Error - Please restart",
|
468 |
+
inputs="text",
|
469 |
+
outputs="text"
|
470 |
+
).launch()
|
471 |
+
except:
|
472 |
+
print("β Complete failure. Exiting.")
|
473 |
+
sys.exit(1)
|
474 |
+
|
475 |
+
if __name__ == "__main__":
|
476 |
+
main()
|