import os import sys import json from pathlib import Path import tempfile import shutil # Safe imports with fallbacks try: import gradio as gr except ImportError: print("Installing gradio...") os.system(f"{sys.executable} -m pip install gradio") import gradio as gr try: import subprocess except ImportError: subprocess = None try: import torch HAS_TORCH = True except ImportError: HAS_TORCH = False print("PyTorch not available, using CPU mode") # Ensure temp directories exist TEMP_DIR = tempfile.gettempdir() HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache") os.makedirs(HF_CACHE_DIR, exist_ok=True) # Set environment variables safely os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" os.environ["GRADIO_SERVER_PORT"] = "7860" os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" def safe_import(module_name, package_name=None): """Safely import a module with fallback""" if package_name is None: package_name = module_name try: return __import__(module_name.replace("-", "_")) except ImportError: print(f"Module {module_name} not found, functionality limited") return None def setup_environment(): """Setup environment with error handling""" dependencies = [ "sageattention==1.0.6", "insightface", "facexlib", "diffusers>=0.30.0", "transformers>=4.44.0", "accelerate>=0.34.0", "xformers", "opencv-python", "imageio[ffmpeg]", "moviepy", "librosa", "soundfile" ] for dep in dependencies: try: module_name = dep.split("==")[0].split(">=")[0].split("[")[0] safe_import(module_name) except Exception as e: print(f"Could not process {dep}: {e}") if subprocess: try: subprocess.run( [sys.executable, "-m", "pip", "install", dep], check=False, capture_output=True, timeout=30 ) except Exception as install_error: print(f"Failed to install {dep}: {install_error}") def download_essential_models(): """Pre-download models with full error handling""" try: from huggingface_hub import snapshot_download print("Attempting to download Hunyuan Video Avatar models...") try: snapshot_download( repo_id="tencent/HunyuanVideo-Avatar", cache_dir=HF_CACHE_DIR, allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], ignore_patterns=["*.mp4", "*.avi", "*.mov"], resume_download=True, max_workers=2 ) except Exception as e: print(f"Could not download HunyuanVideo-Avatar: {e}") try: snapshot_download( repo_id="tencent/HunyuanVideo", cache_dir=HF_CACHE_DIR, allow_patterns=["*.safetensors", "*.json", "*.txt"], ignore_patterns=["*.mp4", "*.avi"], resume_download=True, max_workers=2 ) except Exception as e: print(f"Could not download HunyuanVideo: {e}") print("Model download attempt completed") except ImportError: print("huggingface_hub not available, skipping model download") except Exception as e: print(f"Model download error: {e}") def create_hf_config(): """Create config with error handling""" config = { "model_settings": { "profile": 3, "quantize_transformer": True, "attention_mode": "sage", "compile": False, "teacache": "2.0" }, "avatar_settings": { "max_frames": 120, "resolution": "512x512", "emotion_control": True, "multi_character": True }, "memory_optimization": { "enable_vae_tiling": True, "enable_cpu_offload": True, "max_batch_size": 1, "gradient_checkpointing": True }, "audio_processing": { "sample_rate": 16000, "max_duration": 15, "supported_formats": ["wav", "mp3", "m4a"] } } config_path = os.path.join(TEMP_DIR, "hf_config.json") try: with open(config_path, "w", encoding='utf-8') as f: json.dump(config, f, indent=2) except Exception as e: print(f"Could not save config: {e}") config_path = None return config def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512): """Create a dummy video file for testing""" try: import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) for i in range(duration * fps): # Create gradient frame frame = np.ones((height, width, 3), dtype=np.uint8) * 50 text = f"Frame {i+1}" cv2.putText(frame, text, (width//4, height//2), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) out.write(frame) out.release() return True except Exception as e: print(f"Could not create video with OpenCV: {e}") # Create empty file as fallback try: with open(output_path, 'wb') as f: f.write(b'dummy video content') return True except: return False class WanGPInterface: """WanGP Interface with full error handling""" def __init__(self, config): self.config = config or {} self.device = "cpu" if HAS_TORCH: try: self.device = "cuda" if torch.cuda.is_available() else "cpu" except: self.device = "cpu" self.models_loaded = False def load_models(self): """Load models with error handling""" if self.models_loaded: return True try: print("Loading Hunyuan Video Avatar models (placeholder)...") # Placeholder for actual model loading import time time.sleep(0.5) # Simulate loading self.models_loaded = True print("✅ Models loaded successfully (simulated)!") return True except Exception as e: print(f"Error in model loading: {e}") self.models_loaded = False return False def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): """Generate avatar video with comprehensive error handling""" try: # Validate inputs if audio_file is None: return None, "❌ Error: No audio file provided" if avatar_image is None: return None, "❌ Error: No avatar image provided" # Ensure model is loaded if not self.load_models(): print("Models not loaded, using dummy generation") # Create output path output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4" output_path = os.path.join(TEMP_DIR, output_filename) # Create dummy video if create_dummy_video(output_path, duration=5): if os.path.exists(output_path): return output_path, "✅ Video generated successfully (demo mode)!" else: return None, "❌ Error: Failed to create output file" else: return None, "❌ Error: Video generation failed" except Exception as e: error_msg = f"❌ Error in avatar generation: {str(e)}" print(error_msg) return None, error_msg def generate_video(self, prompt, duration=5, resolution="512x512"): """Generate video from text with error handling""" try: if not prompt: return "❌ Error: No prompt provided" # Parse resolution try: width, height = map(int, resolution.split('x')) except: width, height = 512, 512 # Ensure model is loaded if not self.load_models(): print("Models not loaded, using dummy generation") # Create output path output_filename = f"video_{os.getpid()}_{id(self)}.mp4" output_path = os.path.join(TEMP_DIR, output_filename) # Create dummy video if create_dummy_video(output_path, duration=int(duration), width=width, height=height): if os.path.exists(output_path): return output_path, f"✅ Generated video for prompt: {prompt[:50]}..." else: return None, "❌ Error: Failed to create output file" else: return None, "❌ Error: Video generation failed" except Exception as e: error_msg = f"❌ Error in video generation: {str(e)}" print(error_msg) return None, error_msg def create_gradio_interface(wangp_interface): """Create Gradio interface with error handling""" try: with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: gr.HTML("""
Advanced AI Video Generation with Audio-Driven Human Animation
⚠️ Running in Demo Mode - Using placeholder outputs
Powered by Hunyuan Video Avatar & WanGP v6.3
Note: This is a demonstration interface with placeholder outputs