Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,153 Bytes
e1df55d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import gradio as gr
import spaces
import os
from typing import List, Dict, Any, Optional, Tuple
import hashlib
from datetime import datetime
import numpy as np
from transformers import pipeline, TextIteratorStreamer
import torch
from threading import Thread
import re
# PDF ์ฒ๋ฆฌ ๋ผ์ด๋ธ๋ฌ๋ฆฌ
try:
import fitz # PyMuPDF
PDF_AVAILABLE = True
except ImportError:
PDF_AVAILABLE = False
print("โ ๏ธ PyMuPDF not installed. Install with: pip install pymupdf")
try:
from sentence_transformers import SentenceTransformer
ST_AVAILABLE = True
except ImportError:
ST_AVAILABLE = False
print("โ ๏ธ Sentence Transformers not installed. Install with: pip install sentence-transformers")
# Custom CSS
custom_css = """
.gradio-container {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
min-height: 100vh;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.main-container {
background: rgba(255, 255, 255, 0.98);
border-radius: 16px;
padding: 24px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
border: 1px solid rgba(0, 0, 0, 0.05);
margin: 12px;
}
.pdf-status {
padding: 12px 16px;
border-radius: 12px;
margin: 12px 0;
font-size: 0.95rem;
font-weight: 500;
}
.pdf-success {
background: linear-gradient(135deg, #d4edda 0%, #c3e6cb 100%);
border: 1px solid #b1dfbb;
color: #155724;
}
.pdf-error {
background: linear-gradient(135deg, #f8d7da 0%, #f5c6cb 100%);
border: 1px solid #f1aeb5;
color: #721c24;
}
.pdf-info {
background: linear-gradient(135deg, #d1ecf1 0%, #bee5eb 100%);
border: 1px solid #9ec5d8;
color: #0c5460;
}
.rag-context {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
border-left: 4px solid #f59e0b;
padding: 12px;
margin: 12px 0;
border-radius: 8px;
font-size: 0.9rem;
}
.thinking-section {
background: rgba(0, 0, 0, 0.02);
border: 1px solid rgba(0, 0, 0, 0.1);
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
"""
class SimpleTextSplitter:
"""ํ
์คํธ ๋ถํ ๊ธฐ"""
def __init__(self, chunk_size=800, chunk_overlap=100):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def split_text(self, text: str) -> List[str]:
"""ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ """
chunks = []
sentences = text.split('. ')
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < self.chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
class PDFRAGSystem:
"""PDF ๊ธฐ๋ฐ RAG ์์คํ
"""
def __init__(self):
self.documents = {}
self.document_chunks = {}
self.embeddings_store = {}
self.text_splitter = SimpleTextSplitter(chunk_size=800, chunk_overlap=100)
# ์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๊ธฐํ
self.embedder = None
if ST_AVAILABLE:
try:
self.embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
print("โ
์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ ์ฑ๊ณต")
except Exception as e:
print(f"โ ๏ธ ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋ก๋ ์คํจ: {e}")
def extract_text_from_pdf(self, pdf_path: str) -> Dict[str, Any]:
"""PDF์์ ํ
์คํธ ์ถ์ถ"""
if not PDF_AVAILABLE:
return {
"metadata": {
"title": "PDF Reader Not Available",
"file_name": os.path.basename(pdf_path),
"pages": 0
},
"full_text": "PDF ์ฒ๋ฆฌ๋ฅผ ์ํด 'pip install pymupdf'๋ฅผ ์คํํด์ฃผ์ธ์."
}
try:
doc = fitz.open(pdf_path)
text_content = []
metadata = {
"title": doc.metadata.get("title", os.path.basename(pdf_path)),
"pages": len(doc),
"file_name": os.path.basename(pdf_path)
}
for page_num, page in enumerate(doc):
text = page.get_text()
if text.strip():
text_content.append(text)
doc.close()
return {
"metadata": metadata,
"full_text": "\n\n".join(text_content)
}
except Exception as e:
raise Exception(f"PDF ์ฒ๋ฆฌ ์ค๋ฅ: {str(e)}")
def process_and_store_pdf(self, pdf_path: str, doc_id: str) -> Dict[str, Any]:
"""PDF ์ฒ๋ฆฌ ๋ฐ ์ ์ฅ"""
try:
# PDF ํ
์คํธ ์ถ์ถ
pdf_data = self.extract_text_from_pdf(pdf_path)
# ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ
chunks = self.text_splitter.split_text(pdf_data["full_text"])
if not chunks:
print("Warning: No chunks created from PDF")
return {"success": False, "error": "No text content found in PDF"}
print(f"Created {len(chunks)} chunks from PDF")
# ์ฒญํฌ ์ ์ฅ
self.document_chunks[doc_id] = chunks
# ์๋ฒ ๋ฉ ์์ฑ (์ ํ์ )
if self.embedder:
try:
print("Generating embeddings...")
embeddings = self.embedder.encode(chunks)
self.embeddings_store[doc_id] = embeddings
print(f"Generated {len(embeddings)} embeddings")
except Exception as e:
print(f"Warning: Failed to generate embeddings: {e}")
# ์๋ฒ ๋ฉ ์คํจํด๋ ๊ณ์ ์งํ
# ๋ฌธ์ ์ ๋ณด ์ ์ฅ
self.documents[doc_id] = {
"metadata": pdf_data["metadata"],
"chunk_count": len(chunks),
"upload_time": datetime.now().isoformat()
}
# ๋๋ฒ๊ทธ: ์ฒซ ๋ฒ์งธ ์ฒญํฌ ์ถ๋ ฅ
print(f"First chunk preview: {chunks[0][:200]}...")
return {
"success": True,
"doc_id": doc_id,
"chunks": len(chunks),
"pages": pdf_data["metadata"]["pages"],
"title": pdf_data["metadata"]["title"]
}
except Exception as e:
print(f"Error processing PDF: {e}")
return {"success": False, "error": str(e)}
def search_relevant_chunks(self, query: str, doc_ids: List[str], top_k: int = 3) -> List[Dict]:
"""๊ด๋ จ ์ฒญํฌ ๊ฒ์"""
all_relevant_chunks = []
print(f"Searching chunks for query: '{query[:50]}...' in {len(doc_ids)} documents")
# ๋จผ์ ๋ฌธ์๊ฐ ์๋์ง ํ์ธ
for doc_id in doc_ids:
if doc_id not in self.document_chunks:
print(f"Warning: Document {doc_id} not found in chunks")
continue
chunks = self.document_chunks[doc_id]
print(f"Document {doc_id} has {len(chunks)} chunks")
# ์๋ฒ ๋ฉ ๊ธฐ๋ฐ ๊ฒ์ ์๋
if self.embedder and doc_id in self.embeddings_store:
try:
query_embedding = self.embedder.encode([query])[0]
doc_embeddings = self.embeddings_store[doc_id]
# ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ (์์ ํ๊ฒ)
similarities = []
for i, emb in enumerate(doc_embeddings):
try:
query_norm = np.linalg.norm(query_embedding)
emb_norm = np.linalg.norm(emb)
if query_norm > 0 and emb_norm > 0:
sim = np.dot(query_embedding, emb) / (query_norm * emb_norm)
similarities.append(sim)
else:
similarities.append(0.0)
except Exception as e:
print(f"Error calculating similarity for chunk {i}: {e}")
similarities.append(0.0)
# ์์ ์ฒญํฌ ์ ํ
if similarities:
top_indices = np.argsort(similarities)[-min(top_k, len(similarities)):][::-1]
for idx in top_indices:
if idx < len(chunks): # ์ธ๋ฑ์ค ๋ฒ์ ํ์ธ
all_relevant_chunks.append({
"content": chunks[idx],
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
"similarity": similarities[idx]
})
print(f"Added chunk {idx} with similarity: {similarities[idx]:.3f}")
except Exception as e:
print(f"Error in embedding search: {e}")
# ์๋ฒ ๋ฉ ์คํจ์ ํด๋ฐฑ
# ์๋ฒ ๋ฉ์ด ์๊ฑฐ๋ ์คํจํ ๊ฒฝ์ฐ - ๊ฐ๋จํ ์ฒ์ N๊ฐ ์ฒญํฌ ๋ฐํ
if not all_relevant_chunks:
print(f"Falling back to simple chunk selection for {doc_id}")
for i in range(min(top_k, len(chunks))):
all_relevant_chunks.append({
"content": chunks[i],
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
"similarity": 1.0 - (i * 0.1) # ์์๋๋ก ๊ฐ์ค์น
})
print(f"Added chunk {i} (fallback)")
# ์ ์ฌ๋ ๊ธฐ์ค ์ ๋ ฌ
all_relevant_chunks.sort(key=lambda x: x.get('similarity', 0), reverse=True)
# ์์ K๊ฐ ์ ํ
result = all_relevant_chunks[:top_k]
print(f"Returning {len(result)} chunks")
# ๋๋ฒ๊ทธ: ์ฒซ ๋ฒ์งธ ์ฒญํฌ ๋ด์ฉ ์ผ๋ถ ์ถ๋ ฅ
if result:
print(f"First chunk preview: {result[0]['content'][:100]}...")
return result
def create_rag_prompt(self, query: str, doc_ids: List[str], top_k: int = 3) -> tuple:
"""RAG ํ๋กฌํํธ ์์ฑ - ์ฟผ๋ฆฌ์ ์ปจํ
์คํธ๋ฅผ ๋ถ๋ฆฌํ์ฌ ๋ฐํ"""
print(f"Creating RAG prompt for query: '{query[:50]}...' with docs: {doc_ids}")
relevant_chunks = self.search_relevant_chunks(query, doc_ids, top_k)
if not relevant_chunks:
print("No relevant chunks found - checking if documents exist")
# ๋ฌธ์๊ฐ ์๋๋ฐ ์ฒญํฌ๋ฅผ ๋ชป ์ฐพ์ ๊ฒฝ์ฐ, ์ฒซ ๋ฒ์งธ ์ฒญํฌ๋ผ๋ ์ฌ์ฉ
for doc_id in doc_ids:
if doc_id in self.document_chunks and self.document_chunks[doc_id]:
print(f"Using first chunk from {doc_id} as fallback")
relevant_chunks = [{
"content": self.document_chunks[doc_id][0],
"doc_name": self.documents[doc_id]["metadata"]["file_name"],
"similarity": 0.5
}]
break
if not relevant_chunks:
print("No documents or chunks available")
return query, ""
print(f"Using {len(relevant_chunks)} chunks for context")
# ์ปจํ
์คํธ ๊ตฌ์ฑ
context_parts = []
context_parts.append("Based on the following document context, please answer the question below:")
context_parts.append("=" * 40)
for i, chunk in enumerate(relevant_chunks, 1):
context_parts.append(f"\n[Document Reference {i} - {chunk['doc_name']}]")
# ์ฒญํฌ ํฌ๊ธฐ ์ฆ๊ฐ
content = chunk['content'][:1000] if len(chunk['content']) > 1000 else chunk['content']
context_parts.append(content)
print(f"Added chunk {i} ({len(content)} chars) with similarity: {chunk.get('similarity', 0):.3f}")
context_parts.append("\n" + "=" * 40)
context = "\n".join(context_parts)
enhanced_query = f"{context}\n\nQuestion: {query}\n\nAnswer based on the document context provided above:"
print(f"Enhanced query length: {len(enhanced_query)} chars (original: {len(query)} chars)")
return enhanced_query, context
# Initialize model and RAG system
model_id = "openai/gpt-oss-20b"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
rag_system = PDFRAGSystem()
# Global state for RAG
rag_enabled = False
selected_docs = []
top_k_chunks = 3
last_context = ""
def format_conversation_history(chat_history):
"""Format conversation history for the model"""
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
@spaces.GPU()
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
"""Generate response with optional RAG enhancement"""
global last_context, rag_enabled, selected_docs, top_k_chunks
# Debug logging
print(f"RAG Enabled: {rag_enabled}")
print(f"Selected Docs: {selected_docs}")
print(f"Available Docs: {list(rag_system.documents.keys())}")
# Apply RAG if enabled
if rag_enabled and selected_docs:
doc_ids = [doc.split(":")[0] for doc in selected_docs]
enhanced_input, context = rag_system.create_rag_prompt(input_data, doc_ids, top_k_chunks)
last_context = context
actual_input = enhanced_input
print(f"RAG Applied - Original: {len(input_data)} chars, Enhanced: {len(enhanced_input)} chars")
else:
actual_input = input_data
last_context = ""
print("RAG Not Applied")
# Prepare messages
new_message = {"role": "user", "content": actual_input}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Setup streaming
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"streamer": streamer
}
thread = Thread(target=pipe, args=(messages,), kwargs=generation_kwargs)
thread.start()
# Process streaming output
thinking = ""
final = ""
started_final = False
for chunk in streamer:
if not started_final:
if "assistantfinal" in chunk.lower():
split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
thinking += split_parts[0]
final += split_parts[1]
started_final = True
else:
thinking += chunk
else:
final += chunk
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
# Add RAG context indicator if used
rag_indicator = ""
if rag_enabled and selected_docs and last_context:
rag_indicator = "<div class='rag-context'>๐ RAG Context Applied</div>\n\n"
formatted = f"{rag_indicator}<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
def upload_pdf(file):
"""PDF ํ์ผ ์
๋ก๋ ์ฒ๋ฆฌ"""
if file is None:
return (
gr.update(value="<div class='pdf-status pdf-info'>๐ ํ์ผ์ ์ ํํด์ฃผ์ธ์</div>"),
gr.update(choices=[])
)
try:
# ํ์ผ ํด์๋ฅผ ID๋ก ์ฌ์ฉ
with open(file.name, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()[:8]
doc_id = f"doc_{file_hash}"
# PDF ์ฒ๋ฆฌ ๋ฐ ์ ์ฅ
result = rag_system.process_and_store_pdf(file.name, doc_id)
if result["success"]:
status_html = f"""
<div class="pdf-status pdf-success">
โ
PDF ์
๋ก๋ ์๋ฃ!<br>
๐ {result['title']}<br>
๐ {result['pages']} ํ์ด์ง | ๐ {result['chunks']} ์ฒญํฌ
</div>
"""
# ๋ฌธ์ ๋ชฉ๋ก ์
๋ฐ์ดํธ
doc_choices = [f"{doc_id}: {rag_system.documents[doc_id]['metadata']['file_name']}"
for doc_id in rag_system.documents.keys()]
return (
status_html,
gr.update(choices=doc_choices, value=doc_choices)
)
else:
return (
f"<div class='pdf-status pdf-error'>โ ์ค๋ฅ: {result['error']}</div>",
gr.update()
)
except Exception as e:
return (
f"<div class='pdf-status pdf-error'>โ ์ค๋ฅ: {str(e)}</div>",
gr.update()
)
def clear_documents():
"""๋ฌธ์ ์ด๊ธฐํ"""
global selected_docs
rag_system.documents = {}
rag_system.document_chunks = {}
rag_system.embeddings_store = {}
selected_docs = []
return (
gr.update(value="<div class='pdf-status pdf-info'>๐๏ธ ๋ชจ๋ ๋ฌธ์๊ฐ ์ญ์ ๋์์ต๋๋ค</div>"),
gr.update(choices=[], value=[])
)
def update_rag_settings(enable, docs, k):
"""Update RAG settings"""
global rag_enabled, selected_docs, top_k_chunks
rag_enabled = enable
selected_docs = docs if docs else []
top_k_chunks = k
# Debug logging
print(f"RAG Settings Updated - Enabled: {rag_enabled}, Docs: {selected_docs}, Top-K: {top_k_chunks}")
status = "โ
Enabled" if enable and docs else "โญ Disabled"
status_html = f"<div class='pdf-status pdf-info'>๐ RAG: <strong>{status}</strong></div>"
# Show context preview if RAG is enabled
if enable and docs:
preview = f"<div class='rag-context'>๐ Using {len(docs)} document(s) with {k} chunks per query</div>"
return gr.update(value=status_html), gr.update(value=preview, visible=True)
else:
return gr.update(value=status_html), gr.update(value="", visible=False)
# Build the interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, fill_height=True) as demo:
gr.Markdown("# ๐ GPT-OSS-20B with PDF RAG System")
gr.Markdown("Enhanced AI assistant with document-based context understanding")
with gr.Row():
# Left sidebar for RAG controls
with gr.Column(scale=1):
with gr.Group(elem_classes="main-container"):
gr.Markdown("### ๐ Document RAG Settings")
pdf_upload = gr.File(
label="Upload PDF",
file_types=[".pdf"],
type="filepath"
)
upload_status = gr.HTML(
value="<div class='pdf-status pdf-info'>๐ค Upload a PDF to enable document-based answers</div>"
)
document_list = gr.CheckboxGroup(
choices=[],
label="๐ Select Documents",
info="Choose documents to use as context"
)
clear_btn = gr.Button("๐๏ธ Clear All Documents", size="sm", variant="secondary")
enable_rag = gr.Checkbox(
label="โจ Enable RAG",
value=False,
info="Use documents for context-aware responses"
)
top_k_slider = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Context Chunks",
info="Number of document chunks to use"
)
# RAG status display
rag_status = gr.HTML(
value="<div class='pdf-status pdf-info'>๐ RAG: <strong>Disabled</strong></div>"
)
context_preview = gr.HTML(value="", visible=False)
# Right side for chat interface
with gr.Column(scale=3):
with gr.Group(elem_classes="main-container"):
# Create ChatInterface with custom function
chat_interface = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""Chat with GPT-OSS-20B. Upload PDFs to enhance responses with document context.
Click to view thinking process (default is on).""",
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt (RAG will be applied if enabled)"
),
stop_btn="Stop Generation",
multimodal=False
)
# Event handlers
pdf_upload.upload(
fn=upload_pdf,
inputs=[pdf_upload],
outputs=[upload_status, document_list]
)
clear_btn.click(
fn=clear_documents,
outputs=[upload_status, document_list]
)
# Update RAG settings when changed
enable_rag.change(
fn=update_rag_settings,
inputs=[enable_rag, document_list, top_k_slider],
outputs=[rag_status, context_preview]
)
document_list.change(
fn=update_rag_settings,
inputs=[enable_rag, document_list, top_k_slider],
outputs=[rag_status, context_preview]
)
top_k_slider.change(
fn=update_rag_settings,
inputs=[enable_rag, document_list, top_k_slider],
outputs=[rag_status, context_preview]
)
if __name__ == "__main__":
demo.launch(share=True) |