#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import shutil import base64 from typing import Optional import gradio as gr from smolagents.agent_types import AgentAudio, AgentImage, AgentText from smolagents.agents import MultiStepAgent, PlanningStep from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep from smolagents.utils import _is_package_available CUSTOM_CSS = """ .gradio-container {min-height: 100vh;} .content-wrap {padding-bottom: 60px;} .full-width-btn { width: 100% !important; height: 50px !important; font-size: 18px !important; margin-top: 20px !important; background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important; color: white !important; border: none !important; } .full-width-btn:hover { background: linear-gradient(45deg, #FF5252, #3CB4AC) !important; } """ def image_to_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def create_header(): with gr.Row(): with gr.Column(scale=1): if os.path.exists("static/aivn_logo.png"): logo_base64 = image_to_base64("static/aivn_logo.png") gr.HTML(f""" Logo """) else: gr.HTML("""
AI VIETNAM
""") with gr.Column(scale=4): gr.Markdown( """

📰 News Summary Agent

🚀 AIO2024 Module 10 🤗

🗞️ Real-time News Fetch & Summarization

🔍 Topic Classification & Insight Extraction

""") def create_footer(): footer_html = """ """ return gr.HTML(footer_html) def get_step_footnote_content(step_log: MemoryStep, step_name: str) -> str: """Get a footnote string for a step log with duration and token information""" step_footnote = f"**{step_name}**" if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): token_str = f" | Input tokens:{step_log.input_token_count:,} | Output tokens: {step_log.output_token_count:,}" step_footnote += token_str if hasattr(step_log, "duration"): step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None step_footnote += step_duration step_footnote_content = f""" < span style = "color: #bbbbc2; font-size: 12px;" > {step_footnote} < /span > """ return step_footnote_content def pull_messages_from_step(step_log: MemoryStep): """Extract ChatMessage objects from agent steps with proper nesting""" if not _is_package_available("gradio"): raise ModuleNotFoundError( "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" ) if isinstance(step_log, ActionStep): step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "Step" yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") if hasattr(step_log, "model_output") and step_log.model_output: model_output = step_log.model_output.strip() model_output = re.sub(r"```\s*", "```", model_output) model_output = re.sub(r"\s*```", "```", model_output) model_output = re.sub( r"```\s*\n\s*", "```", model_output) model_output = model_output.strip() yield gr.ChatMessage(role="assistant", content=model_output) if hasattr(step_log, "tool_calls") and step_log.tool_calls: first_tool_call = step_log.tool_calls[0] used_code = first_tool_call.name == "python_interpreter" args = first_tool_call.arguments content = str(args.get("answer", args)) if isinstance( args, dict) else str(args).strip() if used_code: content = re.sub(r"```.*?\n", "", content) content = re.sub(r"\s*\s*", "", content).strip() if not content.startswith("```python"): content = f"```python\n{content}\n```" yield gr.ChatMessage( role="assistant", content=content, metadata={ "title": f"🛠️ Used tool {first_tool_call.name}", "id": f"call_{len(step_log.tool_calls)}", "status": "done", }, ) if hasattr(step_log, "observations") and step_log.observations and step_log.observations.strip(): log_content = re.sub(r"^Execution logs:\s*", "", step_log.observations.strip()) yield gr.ChatMessage( role="assistant", content=f"```bash\n{log_content}\n```", metadata={"title": "📝 Execution Logs", "status": "done"}, ) if hasattr(step_log, "error") and step_log.error: yield gr.ChatMessage( role="assistant", content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"}, ) if getattr(step_log, "observations_images", []): for image in step_log.observations_images: path_image = AgentImage(image).to_string() yield gr.ChatMessage( role="assistant", content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"}, metadata={"title": "🖼️ Output Image", "status": "done"}, ) yield gr.ChatMessage(role="assistant", content=get_step_footnote_content(step_log, step_number)) yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"}) elif isinstance(step_log, PlanningStep): yield gr.ChatMessage(role="assistant", content="**Planning step**") yield gr.ChatMessage(role="assistant", content=step_log.plan) yield gr.ChatMessage( role="assistant", content=get_step_footnote_content(step_log, "Planning step") ) yield gr.ChatMessage(role="assistant", content="-----", metadata={"status": "done"}) elif isinstance(step_log, FinalAnswerStep): final_answer = step_log.final_answer if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}\n", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage( role="assistant", content=f"**Final answer:** {str(final_answer)}" ) else: raise ValueError(f"Unsupported step type: {type(step_log)}") def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" total_input_tokens = 0 total_output_tokens = 0 for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): if getattr(agent.model, "last_input_token_count", None) is not None: total_input_tokens += agent.model.last_input_token_count total_output_tokens += agent.model.last_output_token_count if isinstance(step_log, (ActionStep, PlanningStep)): step_log.input_token_count = agent.model.last_input_token_count step_log.output_token_count = agent.model.last_output_token_count for message in pull_messages_from_step(step_log): yield message class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): if not _is_package_available("gradio"): raise ModuleNotFoundError( "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" ) self.agent = agent self.file_upload_folder = file_upload_folder self.name = getattr(agent, "name") or "Agent interface" self.description = getattr(agent, "description", None) if self.file_upload_folder is not None and not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages, session_state): import gradio as gr if "agent" not in session_state: session_state["agent"] = self.agent try: messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(session_state["agent"], task=prompt, reset_agent_memory=False): messages.append(msg) yield messages yield messages except Exception as e: messages.append(gr.ChatMessage( role="assistant", content=f"Error: {str(e)}")) yield messages def upload_file(self, file, file_uploads_log, allowed_file_types=None): import gradio as gr if file is None: return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log if allowed_file_types is None: allowed_file_types = [".pdf", ".docx", ".txt"] file_ext = os.path.splitext(file.name)[1].lower() if file_ext not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log original_name = os.path.basename(file.name) sanitized_name = re.sub(r"[^\w\-.]", "_", original_name) file_path = os.path.join(self.file_upload_folder, sanitized_name) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): import gradio as gr return ( text_input + ( f"\nYou have been provided with these files: {file_uploads_log}" if file_uploads_log else "" ), "", gr.Button(interactive=False), ) def launch(self, share: bool = True, **kwargs): self.create_app().launch(debug=True, share=share, **kwargs) def create_app(self): import gradio as gr with gr.Blocks(css=CUSTOM_CSS, theme="ocean", fill_height=True) as demo: create_header() session_state = gr.State({}) stored_messages = gr.State([]) file_uploads_log = gr.State([]) # Main content area: Chat + Input with gr.Row(equal_height=True, variant="panel", elem_classes="content-wrap"): # Column for chat and input with gr.Column(scale=3): # Input area moved here # gr.Markdown("**Your request**") text_input = gr.Textbox( lines=2, label="Your request", placeholder="Enter your prompt here and press Shift+Enter or the button", ) submit_btn = gr.Button( "Submit", variant="primary", elem_classes="full-width-btn" ) # Chatbot chatbot = gr.Chatbot( label="Agent", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), resizeable=True, scale=1, ) # Optional: Column for file uploads if self.file_upload_folder is not None: with gr.Column(scale=1): gr.Markdown("**Upload Files**") upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox( label="Upload Status", interactive=False, visible=False ) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) # Wiring interactions text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, submit_btn], ).then( self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot], ).then( lambda: ( gr.update(value="", interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"), gr.update(interactive=True), ), None, [text_input, submit_btn], ) submit_btn.click( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input, submit_btn], ).then( self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot], ).then( lambda: ( gr.update(value="", interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"), gr.update(interactive=True), ), None, [text_input, submit_btn], ) create_footer() return demo __all__ = ["stream_to_gradio", "GradioUI"]