wjnwjn59's picture
add bg colors
f260c96
import gradio as gr
import pandas as pd
import vlai_template
# Import LightGBM core module
try:
from src import lightgbm_core
LIGHTGBM_AVAILABLE = True
except ImportError as e:
print(f"❌ LightGBM module failed to load: {str(e)}")
print("The demo requires LightGBM to be installed. Please run: pip install lightgbm>=4.0.0")
LIGHTGBM_AVAILABLE = False
lightgbm_core = None
vlai_template.configure(
project_name="LightGBM Demo",
year="2025",
module="03",
description="Interactive demonstration of LightGBM (Light Gradient Boosting Machine) algorithms for classification and regression tasks. Explore efficient gradient boosting with leaf-wise tree growth through dynamic parameter adjustment and comprehensive visualizations.",
colors = {
"primary": "#2C3E50", # Dark slate blue - professional, mathematical
"accent": "#34495E", # Darker slate - structured, academic
"bg1": "#F8F9FA", # Light gray - clean, paper-like background
"bg2": "#E5EBC9", # Pastel green highlight - warmer shade
"bg3": "#E9EDD8", # Pastel green - cooler shade for subtle contrast
},
font_family="'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif"
)
current_dataframe = None
current_target_column = None
current_problem_type = None
def load_sample_data_fallback(dataset_choice="Iris"):
"""Fallback data loading function when LightGBM is not available"""
from sklearn.datasets import load_iris, load_wine, load_diabetes, load_breast_cancer
import pandas as pd
def sklearn_to_df(data):
df = pd.DataFrame(data.data, columns=getattr(data, "feature_names", None))
if df.columns.isnull().any():
df.columns = [f"f{i}" for i in range(df.shape[1])]
df["target"] = data.target
return df
def load_titanic_fallback():
# Create a simple fallback Titanic dataset
import numpy as np
np.random.seed(42)
n_samples = 150
data = {
'age': np.random.normal(30, 10, n_samples),
'sex': np.random.choice([0, 1], n_samples),
'pclass': np.random.choice([1, 2, 3], n_samples),
'fare': np.random.exponential(20, n_samples),
'embarked': np.random.choice([0, 1, 2], n_samples),
'survived': np.random.choice([0, 1], n_samples)
}
return pd.DataFrame(data)
datasets = {
"Iris": lambda: sklearn_to_df(load_iris()),
"Wine": lambda: sklearn_to_df(load_wine()),
"Breast Cancer": lambda: sklearn_to_df(load_breast_cancer()),
"Diabetes": lambda: sklearn_to_df(load_diabetes()),
"Titanic": lambda: load_titanic_fallback(),
}
if dataset_choice not in datasets:
raise ValueError(f"Unknown dataset: {dataset_choice}")
return datasets[dataset_choice]()
def create_input_components_fallback(df, target_col):
"""Fallback input components creation when LightGBM is not available"""
feature_cols = [c for c in df.columns if c != target_col]
components = []
for col in feature_cols:
data = df[col]
if data.dtype == "object":
uniq = sorted(map(str, data.dropna().unique()))
if not uniq:
uniq = ["N/A"]
components.append(
{"name": col, "type": "dropdown", "choices": uniq, "value": uniq[0]}
)
else:
val = pd.to_numeric(data, errors="coerce").dropna().mean()
val = 0.0 if pd.isna(val) else float(val)
components.append(
{
"name": col,
"type": "number",
"value": round(val, 3),
"minimum": None,
"maximum": None,
}
)
return components
SAMPLE_DATA_CONFIG = {
"Iris": {"target_column": "target", "problem_type": "classification"},
"Wine": {"target_column": "target", "problem_type": "classification"},
"Breast Cancer": {"target_column": "target", "problem_type": "classification"},
"Diabetes": {"target_column": "target", "problem_type": "regression"},
"Titanic": {"target_column": "survived", "problem_type": "classification"},
}
force_light_theme_js = """
() => {
const params = new URLSearchParams(window.location.search);
if (!params.has('__theme')) {
params.set('__theme', 'light');
window.location.search = params.toString();
}
}
"""
def validate_config(df, target_col):
if not target_col or target_col not in df.columns:
return False, "❌ Please select a valid target column from the dropdown.", None
target_series = df[target_col]
unique_vals = target_series.nunique()
if target_series.dtype == "object" or unique_vals <= min(20, len(target_series) * 0.1):
problem_type = "classification"
if unique_vals > 50:
return False, f"⚠️ Too many classes ({unique_vals}). Consider another target.", None
if target_series.isnull().any():
return False, "⚠️ Target column has missing values. Please clean your data.", None
else:
problem_type = "regression"
if unique_vals < 5:
return False, f"⚠️ Too few unique values ({unique_vals}). Consider another target.", None
return True, f"\n✅ Configuration is valid! Ready for {unique_vals} {'classes' if problem_type=='classification' else 'values'}.", problem_type
def get_status_message(is_sample, dataset_choice, target_col, problem_type, is_valid, validation_msg):
if is_sample:
return f"✅ **Selected Dataset**: {dataset_choice} | **Target**: {target_col} | **Type**: {problem_type.title()}"
elif target_col and problem_type:
status_icon = "✅" if is_valid else "⚠️"
return f"{status_icon} **Custom Data** | **Target**: {target_col} | **Type**: {problem_type.title()} | {validation_msg}"
else:
return "📁 **Custom data uploaded!** 👆 Please select target column above to continue."
def load_and_configure_data_simple(dataset_choice="Iris"):
global current_dataframe
try:
if not LIGHTGBM_AVAILABLE:
# Fallback data loading without LightGBM
df = load_sample_data_fallback(dataset_choice)
else:
df = lightgbm_core.load_data(None, dataset_choice)
current_dataframe = df
target_options = df.columns.tolist()
cfg = SAMPLE_DATA_CONFIG.get(dataset_choice, {})
target_col = cfg.get("target_column")
problem_type = cfg.get("problem_type")
if target_col and target_col in target_options:
is_valid, validation_msg, detected = validate_config(df, target_col)
if detected:
problem_type = detected
status_msg = get_status_message(True, dataset_choice, target_col, problem_type, is_valid, validation_msg)
else:
# If target_col not in options, use first column as fallback
target_col = target_options[0] if target_options else None
status_msg = get_status_message(True, dataset_choice, target_col, problem_type, False, "")
return [df.head(5).round(2), gr.Dropdown(choices=target_options, value=target_col), status_msg]
except Exception as e:
current_dataframe = None
return [pd.DataFrame(), gr.Dropdown(choices=[], value=None), f"❌ **Error loading data**: {str(e)} | Please try a different dataset."]
def load_and_configure_data(file_obj=None, dataset_choice="Iris"):
global current_dataframe
try:
if not LIGHTGBM_AVAILABLE:
# Fallback data loading without LightGBM
if file_obj is not None:
# Handle file upload fallback
if file_obj.name.endswith(".csv"):
df = pd.read_csv(file_obj.name)
elif file_obj.name.endswith((".xlsx", ".xls")):
df = pd.read_excel(file_obj.name)
else:
raise ValueError("Unsupported format. Upload CSV or Excel files.")
else:
df = load_sample_data_fallback(dataset_choice)
else:
df = lightgbm_core.load_data(file_obj, dataset_choice)
current_dataframe = df
target_options = df.columns.tolist()
is_sample = file_obj is None
if is_sample:
cfg = SAMPLE_DATA_CONFIG.get(dataset_choice, {})
target_col = cfg.get("target_column")
problem_type = cfg.get("problem_type")
else:
target_col, problem_type = None, None
if target_col:
is_valid, validation_msg, detected = validate_config(df, target_col)
if detected:
problem_type = detected
status_msg = get_status_message(is_sample, dataset_choice, target_col, problem_type, is_valid, validation_msg)
else:
status_msg = get_status_message(is_sample, dataset_choice, target_col, problem_type, False, "")
input_updates = [gr.update(visible=False)] * 40
inputs_visible = gr.update(visible=False)
input_status = "⚙️ Configure target column above to enable feature inputs."
if target_col and problem_type and (not is_sample or is_valid):
try:
if LIGHTGBM_AVAILABLE:
components_info = lightgbm_core.create_input_components(df, target_col)
else:
components_info = create_input_components_fallback(df, target_col)
for i in range(min(20, len(components_info))):
comp = components_info[i]
number_idx, dropdown_idx = i * 2, i * 2 + 1
if comp["type"] == "number":
upd = {"visible": True, "label": comp["name"], "value": comp["value"]}
if comp["minimum"] is not None:
upd["minimum"] = comp["minimum"]
if comp["maximum"] is not None:
upd["maximum"] = comp["maximum"]
input_updates[number_idx] = gr.update(**upd)
input_updates[dropdown_idx] = gr.update(visible=False)
else:
input_updates[number_idx] = gr.update(visible=False)
input_updates[dropdown_idx] = gr.update(
visible=True, label=comp["name"], choices=comp["choices"], value=comp["value"]
)
inputs_visible = gr.update(visible=True)
input_status = f"📝 **Ready!** Enter values for {len(components_info)} features below, then click Run prediction. | {validation_msg}"
except Exception as e:
input_status = f"❌ Error generating inputs: {str(e)}"
return [df.head(5).round(2), gr.Dropdown(choices=target_options, value=target_col), status_msg] + input_updates + [inputs_visible, input_status]
except Exception as e:
current_dataframe = None
empty = [pd.DataFrame(), gr.Dropdown(choices=[], value=None), f"❌ **Error loading data**: {str(e)} | Please try a different file or dataset."]
return empty + [gr.update(visible=False)] * 40 + [gr.update(visible=False), "No data loaded."]
def update_configuration(df_preview, target_col):
global current_dataframe
df = current_dataframe
if df is None or df.empty:
return [gr.update(visible=False)] * 40 + [gr.update(visible=False), "No data available.", "No data available."]
if not target_col:
return [gr.update(visible=False)] * 40 + [gr.update(visible=False), "Select target column.", "Select target column."]
try:
is_valid, validation_msg, problem_type = validate_config(df, target_col)
if not is_valid:
return [gr.update(visible=False)] * 40 + [gr.update(visible=False), f"⚠️ {validation_msg}", f"⚠️ {validation_msg}"]
if LIGHTGBM_AVAILABLE:
components_info = lightgbm_core.create_input_components(df, target_col)
else:
components_info = create_input_components_fallback(df, target_col)
input_updates = [gr.update(visible=False)] * 40
for i in range(min(20, len(components_info))):
comp = components_info[i]
number_idx, dropdown_idx = i * 2, i * 2 + 1
if comp["type"] == "number":
upd = {"visible": True, "label": comp["name"], "value": comp["value"]}
if comp["minimum"] is not None:
upd["minimum"] = comp["minimum"]
if comp["maximum"] is not None:
upd["maximum"] = comp["maximum"]
input_updates[number_idx] = gr.update(**upd)
input_updates[dropdown_idx] = gr.update(visible=False)
else:
input_updates[number_idx] = gr.update(visible=False)
input_updates[dropdown_idx] = gr.update(
visible=True, label=comp["name"], choices=comp["choices"], value=comp["value"]
)
input_status = f"📝 Enter values for {len(components_info)} features | {validation_msg}"
status_msg = f"✅ **Selected Dataset**: Custom Data | **Target**: {target_col} | **Type**: {problem_type.title()}"
return input_updates + [gr.update(visible=True), input_status, status_msg]
except Exception as e:
return [gr.update(visible=False)] * 40 + [gr.update(visible=False), f"❌ Error: {str(e)}", f"❌ Error: {str(e)}"]
# AdaBoost-specific functions
def execute_prediction(df_preview, target_col, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, show_split_info, use_early_stopping, early_stopping_rounds, *input_values):
global current_dataframe, current_target_column, current_problem_type
df = current_dataframe
EMPTY_PLOT = None
error_style = "<div style='background:#FFF4F4;border-left:6px solid #C4314B;padding:14px 16px;border-radius:10px;'><strong>⚡ LightGBM Process</strong><br><br>{}</div>"
default_dropdown = gr.Dropdown(choices=["Tree 1"], value="Tree 1")
# Check if LightGBM is available
if not LIGHTGBM_AVAILABLE:
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("❌ LightGBM module is not available!<br><br>Please ensure LightGBM is installed:<br><code>pip install lightgbm>=4.0.0</code><br><br>Then restart the application."), default_dropdown)
if df is None or df.empty:
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("No data available."), default_dropdown)
if not target_col:
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("Configuration incomplete."), default_dropdown)
is_valid, validation_msg, problem_type = validate_config(df, target_col)
if not is_valid:
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("Configuration issue."), default_dropdown)
# Store the current target column and problem type globally
current_target_column = target_col
current_problem_type = problem_type
try:
if LIGHTGBM_AVAILABLE:
components_info = lightgbm_core.create_input_components(df, target_col)
else:
components_info = create_input_components_fallback(df, target_col)
new_point_dict = {}
for i, comp in enumerate(components_info):
number_idx, dropdown_idx = i * 2, i * 2 + 1
if comp["type"] == "number":
v = input_values[number_idx] if number_idx < len(input_values) and input_values[number_idx] is not None else comp["value"]
else:
v = input_values[dropdown_idx] if dropdown_idx < len(input_values) and input_values[dropdown_idx] is not None else comp["value"]
new_point_dict[comp["name"]] = v
boosting_progress_fig, loss_chart_fig, importance_fig, prediction, pred_details, summary, aggregation_display = lightgbm_core.run_lightgbm_and_visualize(
df, target_col, new_point_dict, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, problem_type, use_early_stopping, early_stopping_rounds
)
feature_cols = [c for c in df.columns if c != target_col]
first_tree_fig = lightgbm_core.get_individual_tree_visualization(
lightgbm_core._get_current_model(), 0, feature_cols, problem_type, num_leaves
)
updated_tree_selector = update_tree_selector_choices(n_estimators)
return (loss_chart_fig, first_tree_fig, importance_fig, aggregation_display, updated_tree_selector)
except Exception as e:
print(f"Execution error: {str(e)}") # For debugging
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format(f"Execution error: {str(e)}"), default_dropdown)
def update_tree_selector_choices(n_estimators):
# Only show trees that were actually trained (respect early stopping)
try:
model = lightgbm_core._get_current_model()
actual_trees = 0
if model is not None:
# Prefer evals_result_ count if available
if hasattr(model, 'evals_result_') and model.evals_result_:
eval_results = model.evals_result_
if 'train' in eval_results and eval_results['train']:
metric_name = list(eval_results['train'].keys())[0]
actual_trees = len(eval_results['train'][metric_name])
print(f"Tree selector: eval history reports {actual_trees} trees trained")
# Fallback to best_iteration if present
if actual_trees == 0 and hasattr(model, 'best_iteration') and model.best_iteration is not None:
actual_trees = int(model.best_iteration) + 1
print(f"Tree selector: using best_iteration -> {actual_trees} trees")
# Final fallback to model.num_trees()
if actual_trees == 0 and hasattr(model, 'num_trees'):
actual_trees = int(model.num_trees())
print(f"Tree selector: using num_trees() -> {actual_trees} trees")
# Ensure at least one option to avoid empty dropdown
actual_trees = max(1, actual_trees)
# For UI performance, cap at 100
trees_to_show = min(actual_trees, 100)
# Debug
print(f"Tree selector: requested={n_estimators}, available={actual_trees}, showing={trees_to_show}")
except Exception as e:
trees_to_show = min(max(1, int(n_estimators)), 100)
print(f"Tree selector error: {e}, falling back to requested count {trees_to_show}")
choices = [f"Tree {i+1}" for i in range(trees_to_show)]
return gr.Dropdown(choices=choices, value="Tree 1")
def update_tree_visualization(tree_selector, num_leaves=31):
global current_dataframe, current_target_column, current_problem_type
if current_dataframe is None or current_dataframe.empty:
return None
if current_target_column is None or current_problem_type is None:
return None
try:
model = lightgbm_core._get_current_model()
if model is None:
return None
tree_index = int(tree_selector.split()[-1]) - 1
# Use the stored target column and problem type
feature_cols = [c for c in current_dataframe.columns if c != current_target_column]
# Use the num_leaves parameter from the UI
tree_fig = lightgbm_core.get_individual_tree_visualization(model, tree_index, feature_cols, current_problem_type, num_leaves)
return tree_fig
except Exception as e:
print(f"Tree visualization error: {str(e)}") # For debugging
return None
with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=True, js=force_light_theme_js) as demo:
vlai_template.create_header()
gr.HTML(vlai_template.render_info_card(
icon="⚡",
title="About this LightGBM Demo",
description="This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algorithms for both classification and regression tasks. Explore efficient gradient boosting with leaf-wise tree growth through dynamic parameter adjustment and comprehensive visualizations."
))
gr.Markdown("### ⚡ **How to Use**: Select data → Configure target → Set LightGBM parameters → Enter new point → Run prediction!")
with gr.Row(equal_height=False, variant="panel"):
with gr.Column(scale=45):
with gr.Accordion("📊 Data & Configuration", open=True):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Start with sample datasets or upload your own CSV/Excel files.")
file_upload = gr.File(label="📁 Upload Your Data", file_types=[".csv", ".xlsx", ".xls"])
with gr.Column(scale=3):
sample_dataset = gr.Dropdown(choices=list(SAMPLE_DATA_CONFIG.keys()), value="Titanic", label="🗂️ Sample Datasets")
with gr.Row():
target_column = gr.Dropdown(choices=[], label="🎯 Target Column", interactive=True)
status_message = gr.Markdown("🔄 Loading sample data...")
data_preview = gr.DataFrame(label="📋 Data Preview (First 5 Rows)", row_count=5, interactive=False, max_height=250)
with gr.Accordion("⚡ LightGBM Parameters & Input", open=True):
gr.Markdown("**⚡ LightGBM Parameters**")
with gr.Row():
n_estimators = gr.Number(
label="Number of Trees",
value=100, minimum=1, maximum=1000, precision=0,
info="Requested number of trees (up to 1000). Actual trained trees may be fewer due to early stopping."
)
learning_rate = gr.Slider(
label="Learning Rate",
value=0.1, minimum=0.001, maximum=1.0, step=0.001,
info="Step size shrinkage for each tree"
)
with gr.Row():
num_leaves = gr.Number(
label="Number of Leaves",
value=31, minimum=2, maximum=127, precision=0,
info="Maximum number of leaves in one tree (controls complexity, typically 31-70)"
)
min_data_in_leaf = gr.Number(
label="Min Data in Leaf",
value=20, minimum=1, maximum=1000, precision=0,
info="Minimum number of data points in one leaf (prevents overfitting)"
)
gr.Markdown("**📊 Data Split Configuration**")
with gr.Row():
train_test_split_ratio = gr.Slider(
label="Train/Validation Split Ratio",
value=0.8, minimum=0.6, maximum=0.9, step=0.05,
info="Proportion of data used for training (e.g., 0.8 = 80% train, 20% validation)"
)
show_split_info = gr.Checkbox(
label="Show Split Details",
value=True,
info="Display train/validation set information"
)
with gr.Row():
use_early_stopping = gr.Checkbox(
label="Use Early Stopping",
value=False,
info="Disabled by default to train all requested trees for visualization"
)
early_stopping_rounds = gr.Number(
label="Early Stopping Rounds",
value=20, minimum=5, maximum=100, precision=0,
info="Used only if early stopping is enabled"
)
inputs_group = gr.Group(visible=False)
with inputs_group:
input_status = gr.Markdown("Configure inputs above.")
gr.Markdown("**📝 New Data Point** - Enter feature values for prediction:")
input_components = []
for row in range(5):
with gr.Row():
for col in range(4):
idx = row * 4 + col
if idx < 20:
number_comp = gr.Number(label=f"Feature {idx+1}", visible=False)
dropdown_comp = gr.Dropdown(label=f"Feature {idx+1}", visible=False)
input_components.extend([number_comp, dropdown_comp])
run_prediction_btn = gr.Button("⚡ Run Prediction", variant="primary", size="lg")
with gr.Column(scale=55):
gr.Markdown("### ⚡ **LightGBM Results & Visualization**")
loss_chart = gr.Plot(label="Training/Validation Loss Evolution", visible=True)
with gr.Row():
tree_selector = gr.Dropdown(
choices=["Tree 1"],
value="Tree 1",
label="🌳 Select Tree to Visualize",
interactive=True
)
individual_tree_plot = gr.Plot(label="Individual Tree Structure", visible=True)
feature_importance_plot = gr.Plot(label="Feature Importance", visible=True)
aggregation_display = gr.HTML("**⚡ LightGBM Process**<br><br>LightGBM details will appear here showing how the prediction builds up.", label="⚡ LightGBM Process")
gr.Markdown("""⚡ **LightGBM Leaf-wise Tree Tips**:
- **📉 Loss Evolution Chart**: Monitor training and validation loss to understand model convergence with early stopping.
- **🌳 Individual Tree Visualization**: Select any tree to see its leaf-wise structure and contribution.
- **📊 Feature Importance**: Displays which features are most influential using gradient-based importance.
- **🎯 Parameter Tuning**: Try different **number of trees** (up to 1000) and **learning rate** (0.001-1.0).
- **⚡ Learning Rate**: Default 0.1 works well; lower values (0.01-0.05) for more conservative models, higher values (0.2-0.3) for faster convergence.
- **🍃 Number of Leaves**: Controls tree complexity (default 31). For depth-7 equivalent, use ~70-80 leaves instead of 127 to prevent overfitting.
- **📊 Min Data in Leaf**: Prevents overfitting by requiring minimum samples per leaf (default 20). Increase for larger datasets.
- **🎯 Leaf-wise Growth**: LightGBM grows trees leaf-by-leaf for faster convergence compared to depth-wise growth.
- **🔍 Tree Analysis**: Use the tree selector to understand how each tree contributes to gradient boosting ensemble.
- **⏹️ Early Stopping**: Tree selector shows requested trees, but only actually trained trees can be visualized. Check console for actual vs requested tree counts.
""")
vlai_template.create_footer()
load_evt = demo.load(
fn=lambda: load_and_configure_data(None, "Titanic"),
outputs=[data_preview, target_column, status_message] + input_components + [inputs_group, input_status],
)
upload_evt = file_upload.upload(
fn=lambda file: load_and_configure_data(file, "Iris"),
inputs=[file_upload],
outputs=[data_preview, target_column, status_message] + input_components + [inputs_group, input_status],
)
sample_dataset.change(
fn=lambda choice: load_and_configure_data_simple(choice),
inputs=[sample_dataset],
outputs=[data_preview, target_column, status_message],
).then(
fn=update_configuration, inputs=[data_preview, target_column],
outputs=input_components + [inputs_group, input_status, status_message],
)
target_column.change(
fn=update_configuration, inputs=[data_preview, target_column],
outputs=input_components + [inputs_group, input_status, status_message],
)
run_prediction_btn.click(
fn=execute_prediction,
inputs=[data_preview, target_column, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, show_split_info, use_early_stopping, early_stopping_rounds] + input_components,
outputs=[loss_chart, individual_tree_plot, feature_importance_plot, aggregation_display, tree_selector],
)
tree_selector.change(
fn=update_tree_visualization,
inputs=[tree_selector, num_leaves],
outputs=[individual_tree_plot],
)
if __name__ == "__main__":
demo.launch(allowed_paths=["static/aivn_logo.png", "static/vlai_logo.png", "static"])