Spaces:
Sleeping
Sleeping
modify illustration logic
Browse files- .gitignore +4 -0
- README.md +15 -8
- __pycache__/app.cpython-312.pyc +0 -0
- app.py +84 -22
- requirements.txt +5 -2
- src/__pycache__/lightgbm_core.cpython-312.pyc +0 -0
- src/lightgbm_core.py +462 -195
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
__MACOSX/
|
| 3 |
+
|
| 4 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -12,7 +12,7 @@ license: "mit"
|
|
| 12 |
|
| 13 |
# AIO2025 Module 03 - LightGBM Demo
|
| 14 |
|
| 15 |
-
This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algorithms for both classification and regression tasks. The application provides a comprehensive interface for exploring efficient gradient boosting with leaf-wise tree growth where trees are trained sequentially to minimize gradient errors through dynamic visualizations and real-time parameter adjustment.
|
| 16 |
|
| 17 |
## ⚡ Features
|
| 18 |
|
|
@@ -26,13 +26,14 @@ This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algor
|
|
| 26 |
### LightGBM Parameters
|
| 27 |
- **Number of Trees**: Control gradient boosting iterations (limited to 1000 for performance)
|
| 28 |
- **Learning Rate**: Step size shrinkage for gradient descent (0.001-1.0)
|
| 29 |
-
- **
|
|
|
|
| 30 |
- **Early Stopping**: Automatic stopping when validation loss stops improving
|
| 31 |
|
| 32 |
### Visualizations
|
| 33 |
-
- **Training Progress Chart**:
|
| 34 |
-
- **
|
| 35 |
-
- **
|
| 36 |
- **LightGBM Process**: Gradient boosting aggregation display showing how predictions build up efficiently
|
| 37 |
|
| 38 |
## ⚡ Quick Start
|
|
@@ -61,7 +62,10 @@ This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algor
|
|
| 61 |
- `scikit-learn`: Data preprocessing utilities
|
| 62 |
- `pandas`: Data manipulation
|
| 63 |
- `numpy`: Numerical operations
|
| 64 |
-
- `plotly`: Interactive visualizations
|
|
|
|
|
|
|
|
|
|
| 65 |
- `gradio`: Web interface
|
| 66 |
|
| 67 |
### Architecture
|
|
@@ -75,6 +79,7 @@ This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algor
|
|
| 75 |
### LightGBM Benefits
|
| 76 |
- **Gradient Boosting**: Trees trained sequentially to minimize loss gradients
|
| 77 |
- **High Performance**: Fast training and prediction with leaf-wise tree growth
|
|
|
|
| 78 |
- **Feature Importance**: Robust importance scores through gradient-based methods
|
| 79 |
- **Memory Efficiency**: Uses gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB)
|
| 80 |
- **Early Stopping**: Automatic stopping when validation loss stops improving
|
|
@@ -101,7 +106,8 @@ This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algor
|
|
| 101 |
|
| 102 |
- **Number of Trees**: Limited to 1000 for optimal performance in this demo
|
| 103 |
- **Learning Rate**: Default 0.1 works well; lower rates (0.01-0.05) create more conservative models, higher rates (0.2-0.3) for faster convergence
|
| 104 |
-
- **
|
|
|
|
| 105 |
- **Early Stopping**: Built-in early stopping prevents overfitting automatically
|
| 106 |
|
| 107 |
## 🎯 Use Cases
|
|
@@ -125,7 +131,8 @@ This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algor
|
|
| 125 |
- **Memory Efficient**: Optimized for gradient boosting with GOSS and EFB
|
| 126 |
- **Real-time Updates**: Instant parameter adjustment and visualization
|
| 127 |
- **Tree Selection**: Interactive dropdown to explore individual gradient boosting trees (up to 100)
|
| 128 |
-
- **
|
|
|
|
| 129 |
|
| 130 |
## 🔗 Related Resources
|
| 131 |
|
|
|
|
| 12 |
|
| 13 |
# AIO2025 Module 03 - LightGBM Demo
|
| 14 |
|
| 15 |
+
This interactive demo showcases LightGBM (Light Gradient Boosting Machine) algorithms for both classification and regression tasks. The application provides a comprehensive interface for exploring efficient gradient boosting with leaf-wise tree growth where trees are trained sequentially to minimize gradient errors through dynamic visualizations and real-time parameter adjustment. LightGBM uses leaf-wise tree growth instead of depth-wise growth for faster convergence and better performance.
|
| 16 |
|
| 17 |
## ⚡ Features
|
| 18 |
|
|
|
|
| 26 |
### LightGBM Parameters
|
| 27 |
- **Number of Trees**: Control gradient boosting iterations (limited to 1000 for performance)
|
| 28 |
- **Learning Rate**: Step size shrinkage for gradient descent (0.001-1.0)
|
| 29 |
+
- **Number of Leaves**: Maximum number of leaves in one tree (default: 31, controls complexity)
|
| 30 |
+
- **Min Data in Leaf**: Minimum number of data points in one leaf (default: 20, prevents overfitting)
|
| 31 |
- **Early Stopping**: Automatic stopping when validation loss stops improving
|
| 32 |
|
| 33 |
### Visualizations
|
| 34 |
+
- **Interactive Training Progress Chart**: Interactive Plotly chart showing how loss evolves with early stopping during gradient boosting
|
| 35 |
+
- **Interactive Feature Importance**: Interactive Plotly bar chart displaying which features matter most using gradient-based importance
|
| 36 |
+
- **Individual Tree Visualization**: Detailed view of selected tree structure with leaf-wise growth using matplotlib
|
| 37 |
- **LightGBM Process**: Gradient boosting aggregation display showing how predictions build up efficiently
|
| 38 |
|
| 39 |
## ⚡ Quick Start
|
|
|
|
| 62 |
- `scikit-learn`: Data preprocessing utilities
|
| 63 |
- `pandas`: Data manipulation
|
| 64 |
- `numpy`: Numerical operations
|
| 65 |
+
- `plotly`: Interactive visualizations for charts
|
| 66 |
+
- `matplotlib`: Static visualizations for tree plots
|
| 67 |
+
- `graphviz`: Tree structure visualization
|
| 68 |
+
- `Pillow`: Image processing
|
| 69 |
- `gradio`: Web interface
|
| 70 |
|
| 71 |
### Architecture
|
|
|
|
| 79 |
### LightGBM Benefits
|
| 80 |
- **Gradient Boosting**: Trees trained sequentially to minimize loss gradients
|
| 81 |
- **High Performance**: Fast training and prediction with leaf-wise tree growth
|
| 82 |
+
- **Leaf-wise Growth**: Grows trees leaf-by-leaf instead of level-by-level for faster convergence
|
| 83 |
- **Feature Importance**: Robust importance scores through gradient-based methods
|
| 84 |
- **Memory Efficiency**: Uses gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB)
|
| 85 |
- **Early Stopping**: Automatic stopping when validation loss stops improving
|
|
|
|
| 106 |
|
| 107 |
- **Number of Trees**: Limited to 1000 for optimal performance in this demo
|
| 108 |
- **Learning Rate**: Default 0.1 works well; lower rates (0.01-0.05) create more conservative models, higher rates (0.2-0.3) for faster convergence
|
| 109 |
+
- **Number of Leaves**: Default 31 works well; for depth-7 equivalent, use ~70-80 leaves instead of 127 to prevent overfitting
|
| 110 |
+
- **Min Data in Leaf**: Default 20 prevents overfitting; increase to hundreds or thousands for large datasets
|
| 111 |
- **Early Stopping**: Built-in early stopping prevents overfitting automatically
|
| 112 |
|
| 113 |
## 🎯 Use Cases
|
|
|
|
| 131 |
- **Memory Efficient**: Optimized for gradient boosting with GOSS and EFB
|
| 132 |
- **Real-time Updates**: Instant parameter adjustment and visualization
|
| 133 |
- **Tree Selection**: Interactive dropdown to explore individual gradient boosting trees (up to 100)
|
| 134 |
+
- **Leaf-wise Growth**: LightGBM uses leaf-wise tree growth for faster convergence compared to depth-wise growth
|
| 135 |
+
- **Parameter Tuning**: num_leaves is the main parameter to control tree complexity; min_data_in_leaf prevents overfitting
|
| 136 |
|
| 137 |
## 🔗 Related Resources
|
| 138 |
|
__pycache__/app.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-312.pyc and b/__pycache__/app.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -28,6 +28,8 @@ vlai_template.configure(
|
|
| 28 |
)
|
| 29 |
|
| 30 |
current_dataframe = None
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def load_sample_data_fallback(dataset_choice="Iris"):
|
| 33 |
"""Fallback data loading function when LightGBM is not available"""
|
|
@@ -301,8 +303,8 @@ def update_configuration(df_preview, target_col):
|
|
| 301 |
# AdaBoost-specific functions
|
| 302 |
|
| 303 |
|
| 304 |
-
def execute_prediction(df_preview, target_col, n_estimators,
|
| 305 |
-
global current_dataframe
|
| 306 |
df = current_dataframe
|
| 307 |
|
| 308 |
EMPTY_PLOT = None
|
|
@@ -321,6 +323,10 @@ def execute_prediction(df_preview, target_col, n_estimators, max_depth, learning
|
|
| 321 |
is_valid, validation_msg, problem_type = validate_config(df, target_col)
|
| 322 |
if not is_valid:
|
| 323 |
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("Configuration issue."), default_dropdown)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
try:
|
| 326 |
if LIGHTGBM_AVAILABLE:
|
|
@@ -338,12 +344,12 @@ def execute_prediction(df_preview, target_col, n_estimators, max_depth, learning
|
|
| 338 |
new_point_dict[comp["name"]] = v
|
| 339 |
|
| 340 |
boosting_progress_fig, loss_chart_fig, importance_fig, prediction, pred_details, summary, aggregation_display = lightgbm_core.run_lightgbm_and_visualize(
|
| 341 |
-
df, target_col, new_point_dict, n_estimators,
|
| 342 |
)
|
| 343 |
|
| 344 |
feature_cols = [c for c in df.columns if c != target_col]
|
| 345 |
first_tree_fig = lightgbm_core.get_individual_tree_visualization(
|
| 346 |
-
lightgbm_core._get_current_model(), 0, feature_cols, problem_type
|
| 347 |
)
|
| 348 |
|
| 349 |
updated_tree_selector = update_tree_selector_choices(n_estimators)
|
|
@@ -356,30 +362,67 @@ def execute_prediction(df_preview, target_col, n_estimators, max_depth, learning
|
|
| 356 |
|
| 357 |
|
| 358 |
def update_tree_selector_choices(n_estimators):
|
| 359 |
-
#
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
return gr.Dropdown(choices=choices, value="Tree 1")
|
| 363 |
|
| 364 |
|
| 365 |
-
def update_tree_visualization(tree_selector):
|
| 366 |
-
global current_dataframe
|
| 367 |
|
| 368 |
if current_dataframe is None or current_dataframe.empty:
|
| 369 |
return None
|
| 370 |
|
|
|
|
|
|
|
|
|
|
| 371 |
try:
|
| 372 |
model = lightgbm_core._get_current_model()
|
| 373 |
if model is None:
|
| 374 |
return None
|
| 375 |
|
| 376 |
tree_index = int(tree_selector.split()[-1]) - 1
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
return tree_fig
|
| 382 |
except Exception as e:
|
|
|
|
| 383 |
return None
|
| 384 |
|
| 385 |
|
|
@@ -416,7 +459,7 @@ with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=T
|
|
| 416 |
n_estimators = gr.Number(
|
| 417 |
label="Number of Trees",
|
| 418 |
value=100, minimum=1, maximum=1000, precision=0,
|
| 419 |
-
info="
|
| 420 |
)
|
| 421 |
learning_rate = gr.Slider(
|
| 422 |
label="Learning Rate",
|
|
@@ -424,10 +467,15 @@ with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=T
|
|
| 424 |
info="Step size shrinkage for each tree"
|
| 425 |
)
|
| 426 |
with gr.Row():
|
| 427 |
-
|
| 428 |
-
label="
|
| 429 |
-
value=
|
| 430 |
-
info="Maximum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
)
|
| 432 |
|
| 433 |
gr.Markdown("**📊 Data Split Configuration**")
|
|
@@ -442,6 +490,18 @@ with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=T
|
|
| 442 |
value=True,
|
| 443 |
info="Display train/validation set information"
|
| 444 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
inputs_group = gr.Group(visible=False)
|
| 447 |
with inputs_group:
|
|
@@ -476,15 +536,17 @@ with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=T
|
|
| 476 |
feature_importance_plot = gr.Plot(label="Feature Importance", visible=True)
|
| 477 |
aggregation_display = gr.HTML("**⚡ LightGBM Process**<br><br>LightGBM details will appear here showing how the prediction builds up.", label="⚡ LightGBM Process")
|
| 478 |
|
| 479 |
-
gr.Markdown("""⚡ **LightGBM Tips**:
|
| 480 |
- **📉 Loss Evolution Chart**: Monitor training and validation loss to understand model convergence with early stopping.
|
| 481 |
- **🌳 Individual Tree Visualization**: Select any tree to see its leaf-wise structure and contribution.
|
| 482 |
- **📊 Feature Importance**: Displays which features are most influential using gradient-based importance.
|
| 483 |
- **🎯 Parameter Tuning**: Try different **number of trees** (up to 1000) and **learning rate** (0.001-1.0).
|
| 484 |
- **⚡ Learning Rate**: Default 0.1 works well; lower values (0.01-0.05) for more conservative models, higher values (0.2-0.3) for faster convergence.
|
| 485 |
-
-
|
| 486 |
-
-
|
|
|
|
| 487 |
- **🔍 Tree Analysis**: Use the tree selector to understand how each tree contributes to gradient boosting ensemble.
|
|
|
|
| 488 |
""")
|
| 489 |
|
| 490 |
vlai_template.create_footer()
|
|
@@ -515,13 +577,13 @@ with gr.Blocks(theme="gstaff/sketch", css=vlai_template.custom_css, fill_width=T
|
|
| 515 |
|
| 516 |
run_prediction_btn.click(
|
| 517 |
fn=execute_prediction,
|
| 518 |
-
inputs=[data_preview, target_column, n_estimators,
|
| 519 |
outputs=[loss_chart, individual_tree_plot, feature_importance_plot, aggregation_display, tree_selector],
|
| 520 |
)
|
| 521 |
|
| 522 |
tree_selector.change(
|
| 523 |
fn=update_tree_visualization,
|
| 524 |
-
inputs=[tree_selector],
|
| 525 |
outputs=[individual_tree_plot],
|
| 526 |
)
|
| 527 |
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
current_dataframe = None
|
| 31 |
+
current_target_column = None
|
| 32 |
+
current_problem_type = None
|
| 33 |
|
| 34 |
def load_sample_data_fallback(dataset_choice="Iris"):
|
| 35 |
"""Fallback data loading function when LightGBM is not available"""
|
|
|
|
| 303 |
# AdaBoost-specific functions
|
| 304 |
|
| 305 |
|
| 306 |
+
def execute_prediction(df_preview, target_col, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, show_split_info, use_early_stopping, early_stopping_rounds, *input_values):
|
| 307 |
+
global current_dataframe, current_target_column, current_problem_type
|
| 308 |
df = current_dataframe
|
| 309 |
|
| 310 |
EMPTY_PLOT = None
|
|
|
|
| 323 |
is_valid, validation_msg, problem_type = validate_config(df, target_col)
|
| 324 |
if not is_valid:
|
| 325 |
return (EMPTY_PLOT, EMPTY_PLOT, EMPTY_PLOT, error_style.format("Configuration issue."), default_dropdown)
|
| 326 |
+
|
| 327 |
+
# Store the current target column and problem type globally
|
| 328 |
+
current_target_column = target_col
|
| 329 |
+
current_problem_type = problem_type
|
| 330 |
|
| 331 |
try:
|
| 332 |
if LIGHTGBM_AVAILABLE:
|
|
|
|
| 344 |
new_point_dict[comp["name"]] = v
|
| 345 |
|
| 346 |
boosting_progress_fig, loss_chart_fig, importance_fig, prediction, pred_details, summary, aggregation_display = lightgbm_core.run_lightgbm_and_visualize(
|
| 347 |
+
df, target_col, new_point_dict, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, problem_type, use_early_stopping, early_stopping_rounds
|
| 348 |
)
|
| 349 |
|
| 350 |
feature_cols = [c for c in df.columns if c != target_col]
|
| 351 |
first_tree_fig = lightgbm_core.get_individual_tree_visualization(
|
| 352 |
+
lightgbm_core._get_current_model(), 0, feature_cols, problem_type, num_leaves
|
| 353 |
)
|
| 354 |
|
| 355 |
updated_tree_selector = update_tree_selector_choices(n_estimators)
|
|
|
|
| 362 |
|
| 363 |
|
| 364 |
def update_tree_selector_choices(n_estimators):
|
| 365 |
+
# Only show trees that were actually trained (respect early stopping)
|
| 366 |
+
try:
|
| 367 |
+
model = lightgbm_core._get_current_model()
|
| 368 |
+
actual_trees = 0
|
| 369 |
+
if model is not None:
|
| 370 |
+
# Prefer evals_result_ count if available
|
| 371 |
+
if hasattr(model, 'evals_result_') and model.evals_result_:
|
| 372 |
+
eval_results = model.evals_result_
|
| 373 |
+
if 'train' in eval_results and eval_results['train']:
|
| 374 |
+
metric_name = list(eval_results['train'].keys())[0]
|
| 375 |
+
actual_trees = len(eval_results['train'][metric_name])
|
| 376 |
+
print(f"Tree selector: eval history reports {actual_trees} trees trained")
|
| 377 |
+
# Fallback to best_iteration if present
|
| 378 |
+
if actual_trees == 0 and hasattr(model, 'best_iteration') and model.best_iteration is not None:
|
| 379 |
+
actual_trees = int(model.best_iteration) + 1
|
| 380 |
+
print(f"Tree selector: using best_iteration -> {actual_trees} trees")
|
| 381 |
+
# Final fallback to model.num_trees()
|
| 382 |
+
if actual_trees == 0 and hasattr(model, 'num_trees'):
|
| 383 |
+
actual_trees = int(model.num_trees())
|
| 384 |
+
print(f"Tree selector: using num_trees() -> {actual_trees} trees")
|
| 385 |
+
|
| 386 |
+
# Ensure at least one option to avoid empty dropdown
|
| 387 |
+
actual_trees = max(1, actual_trees)
|
| 388 |
+
# For UI performance, cap at 100
|
| 389 |
+
trees_to_show = min(actual_trees, 100)
|
| 390 |
+
|
| 391 |
+
# Debug
|
| 392 |
+
print(f"Tree selector: requested={n_estimators}, available={actual_trees}, showing={trees_to_show}")
|
| 393 |
+
except Exception as e:
|
| 394 |
+
trees_to_show = min(max(1, int(n_estimators)), 100)
|
| 395 |
+
print(f"Tree selector error: {e}, falling back to requested count {trees_to_show}")
|
| 396 |
+
|
| 397 |
+
choices = [f"Tree {i+1}" for i in range(trees_to_show)]
|
| 398 |
return gr.Dropdown(choices=choices, value="Tree 1")
|
| 399 |
|
| 400 |
|
| 401 |
+
def update_tree_visualization(tree_selector, num_leaves=31):
|
| 402 |
+
global current_dataframe, current_target_column, current_problem_type
|
| 403 |
|
| 404 |
if current_dataframe is None or current_dataframe.empty:
|
| 405 |
return None
|
| 406 |
|
| 407 |
+
if current_target_column is None or current_problem_type is None:
|
| 408 |
+
return None
|
| 409 |
+
|
| 410 |
try:
|
| 411 |
model = lightgbm_core._get_current_model()
|
| 412 |
if model is None:
|
| 413 |
return None
|
| 414 |
|
| 415 |
tree_index = int(tree_selector.split()[-1]) - 1
|
| 416 |
+
|
| 417 |
+
# Use the stored target column and problem type
|
| 418 |
+
feature_cols = [c for c in current_dataframe.columns if c != current_target_column]
|
| 419 |
+
|
| 420 |
+
# Use the num_leaves parameter from the UI
|
| 421 |
+
tree_fig = lightgbm_core.get_individual_tree_visualization(model, tree_index, feature_cols, current_problem_type, num_leaves)
|
| 422 |
|
| 423 |
return tree_fig
|
| 424 |
except Exception as e:
|
| 425 |
+
print(f"Tree visualization error: {str(e)}") # For debugging
|
| 426 |
return None
|
| 427 |
|
| 428 |
|
|
|
|
| 459 |
n_estimators = gr.Number(
|
| 460 |
label="Number of Trees",
|
| 461 |
value=100, minimum=1, maximum=1000, precision=0,
|
| 462 |
+
info="Requested number of trees (up to 1000). Actual trained trees may be fewer due to early stopping."
|
| 463 |
)
|
| 464 |
learning_rate = gr.Slider(
|
| 465 |
label="Learning Rate",
|
|
|
|
| 467 |
info="Step size shrinkage for each tree"
|
| 468 |
)
|
| 469 |
with gr.Row():
|
| 470 |
+
num_leaves = gr.Number(
|
| 471 |
+
label="Number of Leaves",
|
| 472 |
+
value=31, minimum=2, maximum=127, precision=0,
|
| 473 |
+
info="Maximum number of leaves in one tree (controls complexity, typically 31-70)"
|
| 474 |
+
)
|
| 475 |
+
min_data_in_leaf = gr.Number(
|
| 476 |
+
label="Min Data in Leaf",
|
| 477 |
+
value=20, minimum=1, maximum=1000, precision=0,
|
| 478 |
+
info="Minimum number of data points in one leaf (prevents overfitting)"
|
| 479 |
)
|
| 480 |
|
| 481 |
gr.Markdown("**📊 Data Split Configuration**")
|
|
|
|
| 490 |
value=True,
|
| 491 |
info="Display train/validation set information"
|
| 492 |
)
|
| 493 |
+
|
| 494 |
+
with gr.Row():
|
| 495 |
+
use_early_stopping = gr.Checkbox(
|
| 496 |
+
label="Use Early Stopping",
|
| 497 |
+
value=True,
|
| 498 |
+
info="Stop training early if validation performance doesn't improve (prevents overfitting)"
|
| 499 |
+
)
|
| 500 |
+
early_stopping_rounds = gr.Number(
|
| 501 |
+
label="Early Stopping Rounds",
|
| 502 |
+
value=20, minimum=5, maximum=100, precision=0,
|
| 503 |
+
info="Number of rounds to wait before stopping (20% of trees by default)"
|
| 504 |
+
)
|
| 505 |
|
| 506 |
inputs_group = gr.Group(visible=False)
|
| 507 |
with inputs_group:
|
|
|
|
| 536 |
feature_importance_plot = gr.Plot(label="Feature Importance", visible=True)
|
| 537 |
aggregation_display = gr.HTML("**⚡ LightGBM Process**<br><br>LightGBM details will appear here showing how the prediction builds up.", label="⚡ LightGBM Process")
|
| 538 |
|
| 539 |
+
gr.Markdown("""⚡ **LightGBM Leaf-wise Tree Tips**:
|
| 540 |
- **📉 Loss Evolution Chart**: Monitor training and validation loss to understand model convergence with early stopping.
|
| 541 |
- **🌳 Individual Tree Visualization**: Select any tree to see its leaf-wise structure and contribution.
|
| 542 |
- **📊 Feature Importance**: Displays which features are most influential using gradient-based importance.
|
| 543 |
- **🎯 Parameter Tuning**: Try different **number of trees** (up to 1000) and **learning rate** (0.001-1.0).
|
| 544 |
- **⚡ Learning Rate**: Default 0.1 works well; lower values (0.01-0.05) for more conservative models, higher values (0.2-0.3) for faster convergence.
|
| 545 |
+
- **🍃 Number of Leaves**: Controls tree complexity (default 31). For depth-7 equivalent, use ~70-80 leaves instead of 127 to prevent overfitting.
|
| 546 |
+
- **📊 Min Data in Leaf**: Prevents overfitting by requiring minimum samples per leaf (default 20). Increase for larger datasets.
|
| 547 |
+
- **🎯 Leaf-wise Growth**: LightGBM grows trees leaf-by-leaf for faster convergence compared to depth-wise growth.
|
| 548 |
- **🔍 Tree Analysis**: Use the tree selector to understand how each tree contributes to gradient boosting ensemble.
|
| 549 |
+
- **⏹️ Early Stopping**: Tree selector shows requested trees, but only actually trained trees can be visualized. Check console for actual vs requested tree counts.
|
| 550 |
""")
|
| 551 |
|
| 552 |
vlai_template.create_footer()
|
|
|
|
| 577 |
|
| 578 |
run_prediction_btn.click(
|
| 579 |
fn=execute_prediction,
|
| 580 |
+
inputs=[data_preview, target_column, n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio, show_split_info, use_early_stopping, early_stopping_rounds] + input_components,
|
| 581 |
outputs=[loss_chart, individual_tree_plot, feature_importance_plot, aggregation_display, tree_selector],
|
| 582 |
)
|
| 583 |
|
| 584 |
tree_selector.change(
|
| 585 |
fn=update_tree_visualization,
|
| 586 |
+
inputs=[tree_selector, num_leaves],
|
| 587 |
outputs=[individual_tree_plot],
|
| 588 |
)
|
| 589 |
|
requirements.txt
CHANGED
|
@@ -2,5 +2,8 @@ gradio>=5.38.0
|
|
| 2 |
pandas>=1.5.0
|
| 3 |
scikit-learn>=1.3.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
pandas>=1.5.0
|
| 3 |
scikit-learn>=1.3.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
+
lightgbm>=4.0.0
|
| 6 |
+
matplotlib>=3.5.0
|
| 7 |
+
graphviz>=0.20.0
|
| 8 |
+
Pillow>=8.0.0
|
| 9 |
+
plotly>=5.15.0
|
src/__pycache__/lightgbm_core.cpython-312.pyc
CHANGED
|
Binary files a/src/__pycache__/lightgbm_core.cpython-312.pyc and b/src/__pycache__/lightgbm_core.cpython-312.pyc differ
|
|
|
src/lightgbm_core.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
|
| 4 |
import lightgbm as lgb
|
| 5 |
from sklearn.preprocessing import LabelEncoder
|
|
@@ -8,8 +10,20 @@ from sklearn.datasets import (
|
|
| 8 |
)
|
| 9 |
from sklearn.model_selection import train_test_split
|
| 10 |
from sklearn.metrics import accuracy_score, mean_squared_error
|
|
|
|
| 11 |
import plotly.graph_objects as go
|
| 12 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
_current_model = None
|
| 15 |
|
|
@@ -151,7 +165,7 @@ def preprocess_data(df, target_col, new_point_dict):
|
|
| 151 |
|
| 152 |
|
| 153 |
def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
| 154 |
-
n_estimators,
|
| 155 |
X, y, new_point, feature_cols, _ = preprocess_data(df, target_col, new_point_dict)
|
| 156 |
|
| 157 |
if problem_type is None:
|
|
@@ -159,8 +173,10 @@ def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
|
| 159 |
|
| 160 |
if n_estimators < 1:
|
| 161 |
return None, None, None, None, "Number of estimators must be ≥ 1.", None
|
| 162 |
-
if
|
| 163 |
-
return None, None, None, None, "
|
|
|
|
|
|
|
| 164 |
if learning_rate <= 0 or learning_rate > 1:
|
| 165 |
return None, None, None, None, "Learning rate must be between 0 and 1.", None
|
| 166 |
|
|
@@ -175,8 +191,8 @@ def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
|
| 175 |
'objective': 'multiclass' if problem_type == "classification" and len(np.unique(y)) > 2 else 'binary' if problem_type == "classification" else 'regression',
|
| 176 |
'num_class': len(np.unique(y)) if problem_type == "classification" and len(np.unique(y)) > 2 else None,
|
| 177 |
'boosting_type': 'gbdt',
|
| 178 |
-
'num_leaves':
|
| 179 |
-
'
|
| 180 |
'learning_rate': float(learning_rate),
|
| 181 |
'feature_fraction': 0.9,
|
| 182 |
'bagging_fraction': 0.8,
|
|
@@ -193,17 +209,76 @@ def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
|
| 193 |
train_data = lgb.Dataset(X_train, label=y_train)
|
| 194 |
val_data = lgb.Dataset(X_val, label=y_val, reference=train_data)
|
| 195 |
|
| 196 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
model = lgb.train(
|
| 198 |
params,
|
| 199 |
train_data,
|
| 200 |
valid_sets=[train_data, val_data],
|
| 201 |
valid_names=['train', 'eval'],
|
| 202 |
num_boost_round=n_estimators,
|
| 203 |
-
callbacks=
|
| 204 |
)
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
if problem_type == "classification":
|
| 208 |
if len(np.unique(y)) == 2: # Binary classification
|
| 209 |
prediction = int(prediction > 0.5)
|
|
@@ -246,15 +321,48 @@ def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
|
| 246 |
loss_chart_fig = create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type)
|
| 247 |
importance_fig = create_feature_importance_plot(model, feature_cols)
|
| 248 |
prediction_details = create_prediction_details(model, new_point[0], feature_cols, target_col, prediction, problem_type)
|
| 249 |
-
summary = create_algorithm_summary(model, problem_type, n_estimators,
|
| 250 |
aggregation_display = create_lightgbm_aggregation_display(model, new_point[0], problem_type, target_col, df, split_info)
|
| 251 |
|
| 252 |
return None, loss_chart_fig, importance_fig, prediction, prediction_details, summary, aggregation_display
|
| 253 |
|
| 254 |
|
| 255 |
def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
| 256 |
-
"""Create
|
| 257 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
# Get evaluation results from LightGBM training history
|
| 259 |
eval_results = model.evals_result_
|
| 260 |
|
|
@@ -274,8 +382,9 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 274 |
y=train_losses,
|
| 275 |
mode='lines+markers',
|
| 276 |
name='Training Loss',
|
| 277 |
-
line=dict(color='#8E44AD', width=
|
| 278 |
-
marker=dict(size=
|
|
|
|
| 279 |
))
|
| 280 |
|
| 281 |
# Plot validation loss
|
|
@@ -284,8 +393,9 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 284 |
y=val_losses,
|
| 285 |
mode='lines+markers',
|
| 286 |
name='Validation Loss',
|
| 287 |
-
line=dict(color='#3498DB', width=
|
| 288 |
-
marker=dict(size=
|
|
|
|
| 289 |
))
|
| 290 |
|
| 291 |
# Add early stopping line if available
|
|
@@ -294,7 +404,9 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 294 |
x=model.best_iteration + 1,
|
| 295 |
line_dash="dash",
|
| 296 |
line_color="red",
|
| 297 |
-
|
|
|
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
fig.update_layout(
|
|
@@ -302,7 +414,8 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 302 |
xaxis_title="Boosting Round",
|
| 303 |
yaxis_title=metric_name.replace('_', ' ').title(),
|
| 304 |
plot_bgcolor="white",
|
| 305 |
-
height=
|
|
|
|
| 306 |
legend=dict(
|
| 307 |
yanchor="top",
|
| 308 |
y=0.99,
|
|
@@ -331,7 +444,7 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 331 |
)
|
| 332 |
fig.update_layout(
|
| 333 |
title="LightGBM Training Progress - Loss Evolution",
|
| 334 |
-
height=
|
| 335 |
plot_bgcolor="white"
|
| 336 |
)
|
| 337 |
return fig
|
|
@@ -339,204 +452,333 @@ def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
|
| 339 |
|
| 340 |
|
| 341 |
|
| 342 |
-
def create_individual_tree_visualization(model, tree_index, feature_cols, problem_type):
|
| 343 |
-
"""Create visualization of individual LightGBM tree"""
|
| 344 |
try:
|
| 345 |
-
#
|
| 346 |
-
if
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
else:
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
except Exception as e:
|
| 352 |
-
#
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
|
| 369 |
-
def create_lightgbm_tree_plot(tree_index, feature_cols, problem_type, model):
|
| 370 |
"""Create tree visualization for LightGBM trees"""
|
| 371 |
try:
|
|
|
|
|
|
|
|
|
|
| 372 |
# Create a representative visualization for LightGBM tree
|
| 373 |
-
return create_manual_tree_plot(tree_index, feature_cols, problem_type, "LightGBM", 1.0, model)
|
| 374 |
|
| 375 |
except Exception as e:
|
| 376 |
# Fallback to manual tree creation
|
| 377 |
-
return create_manual_tree_plot(tree_index, feature_cols, problem_type, "LightGBM", 1.0)
|
| 378 |
|
| 379 |
|
| 380 |
-
def create_manual_tree_plot(tree_index, feature_cols, problem_type, model_type, weight=1.0, model=None):
|
| 381 |
"""Create a manual tree visualization when tree structure is not easily accessible"""
|
| 382 |
-
fig =
|
| 383 |
|
| 384 |
-
# Create a
|
| 385 |
import random
|
| 386 |
random.seed(tree_index) # Consistent trees for same index
|
| 387 |
|
| 388 |
-
#
|
| 389 |
-
if
|
|
|
|
|
|
|
| 390 |
try:
|
| 391 |
-
|
| 392 |
-
actual_depth = model.params.get('max_depth', 6) if hasattr(model, 'params') else 6
|
| 393 |
-
if actual_depth == -1: # LightGBM default unlimited depth
|
| 394 |
-
actual_depth = 6 # Set reasonable default for visualization
|
| 395 |
except:
|
| 396 |
-
|
| 397 |
else:
|
| 398 |
-
|
| 399 |
|
| 400 |
-
#
|
| 401 |
root_feature = random.choice(feature_cols) if feature_cols else "feature_0"
|
| 402 |
root_threshold = round(random.uniform(0.1, 5.0), 2)
|
| 403 |
|
| 404 |
-
# Create
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
positions = {
|
| 408 |
-
'root': (0, 1),
|
| 409 |
-
'left': (-1, 0),
|
| 410 |
-
'right': (1, 0)
|
| 411 |
-
}
|
| 412 |
-
|
| 413 |
-
if model_type == "LightGBM":
|
| 414 |
-
labels = {
|
| 415 |
-
'root': f"{root_feature}<br>≤ {root_threshold}<br>Tree: {tree_index + 1}<br>Gradient Boosting",
|
| 416 |
-
'left': f"Leaf (≤)<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: {random.randint(20, 80)}",
|
| 417 |
-
'right': f"Leaf (>)<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: {random.randint(20, 80)}"
|
| 418 |
-
}
|
| 419 |
-
else:
|
| 420 |
-
labels = {
|
| 421 |
-
'root': f"{root_feature}<br>≤ {root_threshold}<br>Weight: {weight:.3f}<br>Decision Stump",
|
| 422 |
-
'left': f"Leaf (≤)<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: {random.randint(20, 80)}",
|
| 423 |
-
'right': f"Leaf (>)<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: {random.randint(20, 80)}"
|
| 424 |
-
}
|
| 425 |
-
|
| 426 |
-
colors = {
|
| 427 |
-
'root': '#8E44AD' if model_type == "LightGBM" else '#81C784', # Purple for LightGBM, Green for others
|
| 428 |
-
'left': '#3498DB' if model_type == "LightGBM" else '#FFB74D', # Blue for LightGBM, Orange for others
|
| 429 |
-
'right': '#3498DB' if model_type == "LightGBM" else '#FFB74D' # Blue for LightGBM, Orange for others
|
| 430 |
-
}
|
| 431 |
-
|
| 432 |
-
edges = [('root', 'left'), ('root', 'right')]
|
| 433 |
-
title_suffix = "Gradient Boosting Tree" if model_type == "LightGBM" else "Decision Stump"
|
| 434 |
-
|
| 435 |
-
else:
|
| 436 |
-
# Deeper tree (depth 2+)
|
| 437 |
-
positions = {
|
| 438 |
-
'root': (0, 2),
|
| 439 |
-
'left': (-1.5, 1),
|
| 440 |
-
'right': (1.5, 1),
|
| 441 |
-
'left_left': (-2.5, 0),
|
| 442 |
-
'left_right': (-0.5, 0),
|
| 443 |
-
'right_left': (0.5, 0),
|
| 444 |
-
'right_right': (2.5, 0)
|
| 445 |
-
}
|
| 446 |
-
|
| 447 |
-
if model_type == "LightGBM":
|
| 448 |
-
labels = {
|
| 449 |
-
'root': f"{root_feature}<br>≤ {root_threshold}<br>Tree: {tree_index + 1}<br>Depth: {actual_depth}",
|
| 450 |
-
'left': f"{random.choice(feature_cols) if feature_cols else 'feature_1'}<br>≤ {round(random.uniform(0.1, 3.0), 2)}<br>Samples: 75",
|
| 451 |
-
'right': f"{random.choice(feature_cols) if feature_cols else 'feature_2'}<br>≤ {round(random.uniform(0.1, 3.0), 2)}<br>Samples: 75",
|
| 452 |
-
'left_left': f"Leaf<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: 25",
|
| 453 |
-
'left_right': f"Leaf<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: 50",
|
| 454 |
-
'right_left': f"Leaf<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: 30",
|
| 455 |
-
'right_right': f"Leaf<br>Output: {round(random.uniform(-1, 1), 3)}<br>Samples: 45"
|
| 456 |
-
}
|
| 457 |
-
|
| 458 |
-
colors = {
|
| 459 |
-
'root': '#8E44AD', 'left': '#8E44AD', 'right': '#8E44AD', # Purple for split nodes
|
| 460 |
-
'left_left': '#3498DB', 'left_right': '#3498DB', 'right_left': '#3498DB', 'right_right': '#3498DB' # Blue for leaves
|
| 461 |
-
}
|
| 462 |
-
else:
|
| 463 |
-
labels = {
|
| 464 |
-
'root': f"{root_feature}<br>≤ {root_threshold}<br>Weight: {weight:.3f}<br>Depth: {actual_depth}",
|
| 465 |
-
'left': f"{random.choice(feature_cols) if feature_cols else 'feature_1'}<br>≤ {round(random.uniform(0.1, 3.0), 2)}<br>Samples: 75",
|
| 466 |
-
'right': f"{random.choice(feature_cols) if feature_cols else 'feature_2'}<br>≤ {round(random.uniform(0.1, 3.0), 2)}<br>Samples: 75",
|
| 467 |
-
'left_left': f"Leaf<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: 25",
|
| 468 |
-
'left_right': f"Leaf<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: 50",
|
| 469 |
-
'right_left': f"Leaf<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: 30",
|
| 470 |
-
'right_right': f"Leaf<br>Value: {round(random.uniform(-1, 1), 3)}<br>Samples: 45"
|
| 471 |
-
}
|
| 472 |
-
|
| 473 |
-
colors = {
|
| 474 |
-
'root': '#81C784', 'left': '#81C784', 'right': '#81C784', # Green for split nodes
|
| 475 |
-
'left_left': '#FFB74D', 'left_right': '#FFB74D', 'right_left': '#FFB74D', 'right_right': '#FFB74D' # Orange for leaves
|
| 476 |
-
}
|
| 477 |
-
|
| 478 |
-
edges = [
|
| 479 |
-
('root', 'left'), ('root', 'right'),
|
| 480 |
-
('left', 'left_left'), ('left', 'left_right'),
|
| 481 |
-
('right', 'right_left'), ('right', 'right_right')
|
| 482 |
-
]
|
| 483 |
-
title_suffix = f"Depth {actual_depth} Gradient Boosting Tree" if model_type == "LightGBM" else f"Depth {actual_depth} Tree"
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
child_pos = positions[child]
|
| 489 |
-
edge_x.extend([parent_pos[0], child_pos[0], None])
|
| 490 |
-
edge_y.extend([parent_pos[1], child_pos[1], None])
|
| 491 |
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
line=dict(color='gray', width=2),
|
| 496 |
-
showlegend=False,
|
| 497 |
-
hoverinfo='none'
|
| 498 |
-
))
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
x=[x], y=[y],
|
| 504 |
-
mode='markers+text',
|
| 505 |
-
marker=dict(
|
| 506 |
-
size=35,
|
| 507 |
-
color=colors[node_id],
|
| 508 |
-
line=dict(width=2, color='darkblue'),
|
| 509 |
-
symbol='circle'
|
| 510 |
-
),
|
| 511 |
-
text=labels[node_id],
|
| 512 |
-
textposition='middle center',
|
| 513 |
-
textfont=dict(size=9, color='black'),
|
| 514 |
-
showlegend=False,
|
| 515 |
-
hoverinfo='text',
|
| 516 |
-
hovertext=labels[node_id]
|
| 517 |
-
))
|
| 518 |
|
| 519 |
-
#
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
plot_bgcolor="white",
|
| 530 |
-
height=height,
|
| 531 |
-
margin=dict(l=40, r=40, t=60, b=40),
|
| 532 |
-
showlegend=False
|
| 533 |
-
)
|
| 534 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
return fig
|
| 536 |
|
| 537 |
|
| 538 |
-
def get_individual_tree_visualization(model, tree_index, feature_cols, problem_type):
|
| 539 |
-
return create_individual_tree_visualization(model, tree_index, feature_cols, problem_type)
|
| 540 |
|
| 541 |
|
| 542 |
def create_feature_importance_plot(model, feature_cols):
|
|
@@ -545,27 +787,51 @@ def create_feature_importance_plot(model, feature_cols):
|
|
| 545 |
importances = model.feature_importance(importance_type='gain')
|
| 546 |
order = np.argsort(importances)[::-1]
|
| 547 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
fig = go.Figure()
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
|
|
|
| 554 |
textposition="auto",
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
|
|
|
|
|
|
| 559 |
fig.update_layout(
|
| 560 |
title="LightGBM Feature Importance (Gain)",
|
| 561 |
xaxis_title="Features",
|
| 562 |
yaxis_title="Importance Score",
|
| 563 |
plot_bgcolor="white",
|
| 564 |
-
height=
|
|
|
|
| 565 |
margin=dict(l=40, r=40, t=60, b=40),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
)
|
| 567 |
-
|
| 568 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
return fig
|
| 570 |
except:
|
| 571 |
fig = go.Figure()
|
|
@@ -578,7 +844,7 @@ def create_feature_importance_plot(model, feature_cols):
|
|
| 578 |
)
|
| 579 |
fig.update_layout(
|
| 580 |
title="LightGBM Feature Importance",
|
| 581 |
-
height=
|
| 582 |
plot_bgcolor="white"
|
| 583 |
)
|
| 584 |
return fig
|
|
@@ -607,15 +873,16 @@ def create_prediction_details(model, new_point, feature_cols, target_col, predic
|
|
| 607 |
return f"Predicted Value: {prediction:.3f}"
|
| 608 |
|
| 609 |
|
| 610 |
-
def create_algorithm_summary(model, problem_type, n_estimators,
|
| 611 |
num_trees = model.num_trees() if hasattr(model, 'num_trees') else n_estimators
|
| 612 |
return f"""
|
| 613 |
**LightGBM {problem_type.title()} Model Summary:**
|
| 614 |
- Trees Built: {num_trees}
|
| 615 |
-
-
|
|
|
|
| 616 |
- Learning Rate: {learning_rate}
|
| 617 |
- Features: {len(feature_cols)}
|
| 618 |
-
- Algorithm: Gradient Boosting (LightGBM)
|
| 619 |
"""
|
| 620 |
|
| 621 |
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
+
import io
|
| 4 |
+
import base64
|
| 5 |
|
| 6 |
import lightgbm as lgb
|
| 7 |
from sklearn.preprocessing import LabelEncoder
|
|
|
|
| 10 |
)
|
| 11 |
from sklearn.model_selection import train_test_split
|
| 12 |
from sklearn.metrics import accuracy_score, mean_squared_error
|
| 13 |
+
# Import Plotly for interactive charts
|
| 14 |
import plotly.graph_objects as go
|
| 15 |
import plotly.express as px
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import matplotlib
|
| 18 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
| 19 |
+
|
| 20 |
+
# Add graphviz import for tree visualization
|
| 21 |
+
try:
|
| 22 |
+
import graphviz
|
| 23 |
+
GRAPHVIZ_AVAILABLE = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
GRAPHVIZ_AVAILABLE = False
|
| 26 |
+
print("Warning: graphviz not available. Tree visualization will use fallback methods.")
|
| 27 |
|
| 28 |
_current_model = None
|
| 29 |
|
|
|
|
| 165 |
|
| 166 |
|
| 167 |
def run_lightgbm_and_visualize(df, target_col, new_point_dict,
|
| 168 |
+
n_estimators, num_leaves, min_data_in_leaf, learning_rate, train_test_split_ratio=0.8, problem_type=None, use_early_stopping=True, early_stopping_rounds=20):
|
| 169 |
X, y, new_point, feature_cols, _ = preprocess_data(df, target_col, new_point_dict)
|
| 170 |
|
| 171 |
if problem_type is None:
|
|
|
|
| 173 |
|
| 174 |
if n_estimators < 1:
|
| 175 |
return None, None, None, None, "Number of estimators must be ≥ 1.", None
|
| 176 |
+
if num_leaves < 2:
|
| 177 |
+
return None, None, None, None, "Number of leaves must be ≥ 2.", None
|
| 178 |
+
if min_data_in_leaf < 1:
|
| 179 |
+
return None, None, None, None, "Min data in leaf must be ≥ 1.", None
|
| 180 |
if learning_rate <= 0 or learning_rate > 1:
|
| 181 |
return None, None, None, None, "Learning rate must be between 0 and 1.", None
|
| 182 |
|
|
|
|
| 191 |
'objective': 'multiclass' if problem_type == "classification" and len(np.unique(y)) > 2 else 'binary' if problem_type == "classification" else 'regression',
|
| 192 |
'num_class': len(np.unique(y)) if problem_type == "classification" and len(np.unique(y)) > 2 else None,
|
| 193 |
'boosting_type': 'gbdt',
|
| 194 |
+
'num_leaves': int(num_leaves), # Main parameter to control tree complexity
|
| 195 |
+
'min_data_in_leaf': int(min_data_in_leaf), # Important parameter to prevent overfitting
|
| 196 |
'learning_rate': float(learning_rate),
|
| 197 |
'feature_fraction': 0.9,
|
| 198 |
'bagging_fraction': 0.8,
|
|
|
|
| 209 |
train_data = lgb.Dataset(X_train, label=y_train)
|
| 210 |
val_data = lgb.Dataset(X_val, label=y_val, reference=train_data)
|
| 211 |
|
| 212 |
+
# Custom callback to capture evaluation results
|
| 213 |
+
evals_result = {}
|
| 214 |
+
|
| 215 |
+
def record_eval(env):
|
| 216 |
+
"""Custom callback to record evaluation results"""
|
| 217 |
+
if 'train' not in evals_result:
|
| 218 |
+
evals_result['train'] = {}
|
| 219 |
+
evals_result['eval'] = {}
|
| 220 |
+
|
| 221 |
+
# Get the metric name from the first evaluation
|
| 222 |
+
if env.evaluation_result_list:
|
| 223 |
+
metric_name = env.evaluation_result_list[0][1] # Get metric name from first result
|
| 224 |
+
|
| 225 |
+
if metric_name not in evals_result['train']:
|
| 226 |
+
evals_result['train'][metric_name] = []
|
| 227 |
+
evals_result['eval'][metric_name] = []
|
| 228 |
+
|
| 229 |
+
# Record both training and validation results
|
| 230 |
+
for eval_name, eval_metric, eval_result, _ in env.evaluation_result_list:
|
| 231 |
+
if eval_name == 'train':
|
| 232 |
+
evals_result['train'][eval_metric].append(eval_result)
|
| 233 |
+
elif eval_name == 'eval':
|
| 234 |
+
evals_result['eval'][eval_metric].append(eval_result)
|
| 235 |
+
|
| 236 |
+
# Train model with configurable early stopping
|
| 237 |
+
callbacks = [lgb.log_evaluation(0), record_eval]
|
| 238 |
+
if use_early_stopping:
|
| 239 |
+
# Use user-specified early stopping rounds, but ensure it's reasonable
|
| 240 |
+
stopping_rounds = min(early_stopping_rounds, max(10, int(n_estimators * 0.2)))
|
| 241 |
+
callbacks.append(lgb.early_stopping(stopping_rounds=stopping_rounds, verbose=False))
|
| 242 |
+
print(f"Training with early stopping: {stopping_rounds} rounds")
|
| 243 |
+
else:
|
| 244 |
+
print(f"Training without early stopping: {n_estimators} rounds")
|
| 245 |
+
|
| 246 |
+
# Train the model with evaluation sets
|
| 247 |
model = lgb.train(
|
| 248 |
params,
|
| 249 |
train_data,
|
| 250 |
valid_sets=[train_data, val_data],
|
| 251 |
valid_names=['train', 'eval'],
|
| 252 |
num_boost_round=n_estimators,
|
| 253 |
+
callbacks=callbacks
|
| 254 |
)
|
| 255 |
|
| 256 |
+
# Store evaluation results in the model
|
| 257 |
+
model.evals_result_ = evals_result
|
| 258 |
+
|
| 259 |
+
# Debug information
|
| 260 |
+
print(f"Training completed. Model has evals_result_: {hasattr(model, 'evals_result_')}")
|
| 261 |
+
print(f"Custom evals_result captured: {bool(evals_result)}")
|
| 262 |
+
if evals_result:
|
| 263 |
+
print(f"Custom evaluation results keys: {list(evals_result.keys())}")
|
| 264 |
+
if 'train' in evals_result:
|
| 265 |
+
print(f"Train metrics: {list(evals_result['train'].keys())}")
|
| 266 |
+
if evals_result['train']:
|
| 267 |
+
metric_name = list(evals_result['train'].keys())[0]
|
| 268 |
+
print(f"Train {metric_name} values count: {len(evals_result['train'][metric_name])}")
|
| 269 |
+
if 'eval' in evals_result:
|
| 270 |
+
print(f"Eval metrics: {list(evals_result['eval'].keys())}")
|
| 271 |
+
if evals_result['eval']:
|
| 272 |
+
metric_name = list(evals_result['eval'].keys())[0]
|
| 273 |
+
print(f"Eval {metric_name} values count: {len(evals_result['eval'][metric_name])}")
|
| 274 |
+
else:
|
| 275 |
+
print("No evaluation results captured by custom callback")
|
| 276 |
+
|
| 277 |
+
# Use best iteration if early stopping was used, otherwise use all trees
|
| 278 |
+
if use_early_stopping and hasattr(model, 'best_iteration'):
|
| 279 |
+
prediction = model.predict(new_point, num_iteration=model.best_iteration)[0]
|
| 280 |
+
else:
|
| 281 |
+
prediction = model.predict(new_point)[0]
|
| 282 |
if problem_type == "classification":
|
| 283 |
if len(np.unique(y)) == 2: # Binary classification
|
| 284 |
prediction = int(prediction > 0.5)
|
|
|
|
| 321 |
loss_chart_fig = create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type)
|
| 322 |
importance_fig = create_feature_importance_plot(model, feature_cols)
|
| 323 |
prediction_details = create_prediction_details(model, new_point[0], feature_cols, target_col, prediction, problem_type)
|
| 324 |
+
summary = create_algorithm_summary(model, problem_type, n_estimators, num_leaves, min_data_in_leaf, learning_rate, feature_cols)
|
| 325 |
aggregation_display = create_lightgbm_aggregation_display(model, new_point[0], problem_type, target_col, df, split_info)
|
| 326 |
|
| 327 |
return None, loss_chart_fig, importance_fig, prediction, prediction_details, summary, aggregation_display
|
| 328 |
|
| 329 |
|
| 330 |
def create_loss_chart(model, X_train, y_train, X_val, y_val, problem_type):
|
| 331 |
+
"""Create an interactive loss chart showing training and validation loss evolution during LightGBM training"""
|
| 332 |
try:
|
| 333 |
+
# Debug information
|
| 334 |
+
print(f"Loss chart: Model has evals_result_ attribute: {hasattr(model, 'evals_result_')}")
|
| 335 |
+
if hasattr(model, 'evals_result_'):
|
| 336 |
+
print(f"Loss chart: evals_result_ content: {model.evals_result_}")
|
| 337 |
+
if model.evals_result_:
|
| 338 |
+
print(f"Loss chart: evals_result_ keys: {list(model.evals_result_.keys())}")
|
| 339 |
+
if 'train' in model.evals_result_:
|
| 340 |
+
print(f"Loss chart: train keys: {list(model.evals_result_['train'].keys())}")
|
| 341 |
+
if 'eval' in model.evals_result_:
|
| 342 |
+
print(f"Loss chart: eval keys: {list(model.evals_result_['eval'].keys())}")
|
| 343 |
+
else:
|
| 344 |
+
print("Loss chart: evals_result_ is empty")
|
| 345 |
+
else:
|
| 346 |
+
print("Loss chart: Model does not have evals_result_ attribute")
|
| 347 |
+
|
| 348 |
+
# Check if model has evaluation results
|
| 349 |
+
if not hasattr(model, 'evals_result_') or not model.evals_result_:
|
| 350 |
+
# If no evaluation results, show a message instead of simulated data
|
| 351 |
+
fig = go.Figure()
|
| 352 |
+
fig.add_annotation(
|
| 353 |
+
text="No training history available<br>Run training with validation data to see loss evolution",
|
| 354 |
+
xref="paper", yref="paper",
|
| 355 |
+
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
| 356 |
+
showarrow=False,
|
| 357 |
+
font=dict(size=14)
|
| 358 |
+
)
|
| 359 |
+
fig.update_layout(
|
| 360 |
+
title="LightGBM Training Progress - Loss Evolution",
|
| 361 |
+
height=500,
|
| 362 |
+
plot_bgcolor="white"
|
| 363 |
+
)
|
| 364 |
+
return fig
|
| 365 |
+
|
| 366 |
# Get evaluation results from LightGBM training history
|
| 367 |
eval_results = model.evals_result_
|
| 368 |
|
|
|
|
| 382 |
y=train_losses,
|
| 383 |
mode='lines+markers',
|
| 384 |
name='Training Loss',
|
| 385 |
+
line=dict(color='#8E44AD', width=3),
|
| 386 |
+
marker=dict(size=6, color='#8E44AD'),
|
| 387 |
+
hovertemplate='<b>Training Loss</b><br>Round: %{x}<br>Loss: %{y:.4f}<extra></extra>'
|
| 388 |
))
|
| 389 |
|
| 390 |
# Plot validation loss
|
|
|
|
| 393 |
y=val_losses,
|
| 394 |
mode='lines+markers',
|
| 395 |
name='Validation Loss',
|
| 396 |
+
line=dict(color='#3498DB', width=3),
|
| 397 |
+
marker=dict(size=6, color='#3498DB'),
|
| 398 |
+
hovertemplate='<b>Validation Loss</b><br>Round: %{x}<br>Loss: %{y:.4f}<extra></extra>'
|
| 399 |
))
|
| 400 |
|
| 401 |
# Add early stopping line if available
|
|
|
|
| 404 |
x=model.best_iteration + 1,
|
| 405 |
line_dash="dash",
|
| 406 |
line_color="red",
|
| 407 |
+
line_width=2,
|
| 408 |
+
annotation_text=f"Best Iteration ({model.best_iteration + 1})",
|
| 409 |
+
annotation_position="top"
|
| 410 |
)
|
| 411 |
|
| 412 |
fig.update_layout(
|
|
|
|
| 414 |
xaxis_title="Boosting Round",
|
| 415 |
yaxis_title=metric_name.replace('_', ' ').title(),
|
| 416 |
plot_bgcolor="white",
|
| 417 |
+
height=500,
|
| 418 |
+
hovermode='x unified',
|
| 419 |
legend=dict(
|
| 420 |
yanchor="top",
|
| 421 |
y=0.99,
|
|
|
|
| 444 |
)
|
| 445 |
fig.update_layout(
|
| 446 |
title="LightGBM Training Progress - Loss Evolution",
|
| 447 |
+
height=500,
|
| 448 |
plot_bgcolor="white"
|
| 449 |
)
|
| 450 |
return fig
|
|
|
|
| 452 |
|
| 453 |
|
| 454 |
|
| 455 |
+
def create_individual_tree_visualization(model, tree_index, feature_cols, problem_type, num_leaves=None):
|
| 456 |
+
"""Create visualization of individual LightGBM tree using multiple methods with fallback"""
|
| 457 |
try:
|
| 458 |
+
# Check if model is valid
|
| 459 |
+
if model is None:
|
| 460 |
+
raise Exception("Model is None - please run prediction first")
|
| 461 |
+
|
| 462 |
+
# Check if model has the required attributes
|
| 463 |
+
if not hasattr(model, 'num_trees'):
|
| 464 |
+
raise Exception("Model does not have num_trees attribute")
|
| 465 |
+
|
| 466 |
+
# Check if tree index is valid - use actual trees trained, not just best iteration
|
| 467 |
+
actual_trees = model.num_trees()
|
| 468 |
+
if hasattr(model, 'evals_result_') and model.evals_result_:
|
| 469 |
+
eval_results = model.evals_result_
|
| 470 |
+
if 'train' in eval_results and eval_results['train']:
|
| 471 |
+
metric_name = list(eval_results['train'].keys())[0]
|
| 472 |
+
actual_trees = len(eval_results['train'][metric_name])
|
| 473 |
+
|
| 474 |
+
if tree_index >= actual_trees:
|
| 475 |
+
# If tree index is beyond what was actually trained, show a message
|
| 476 |
+
raise IndexError(f"Tree {tree_index + 1} was not trained. Only {actual_trees} trees were actually trained. Best iteration was {model.best_iteration + 1 if hasattr(model, 'best_iteration') else 'unknown'}.")
|
| 477 |
+
|
| 478 |
+
# Try multiple visualization methods in order of preference
|
| 479 |
+
try:
|
| 480 |
+
# Method 1: Try lightgbm.plot_tree first (as requested by user)
|
| 481 |
+
return create_lightgbm_native_tree_plot(model, tree_index, feature_cols, problem_type, num_leaves)
|
| 482 |
+
except Exception as plot_error:
|
| 483 |
+
print(f"Native plot failed: {plot_error}") # Debug info
|
| 484 |
+
try:
|
| 485 |
+
# Method 2: Try lightgbm.create_tree_digraph as fallback (best quality)
|
| 486 |
+
return create_lightgbm_digraph_tree_plot(model, tree_index, feature_cols, problem_type, num_leaves)
|
| 487 |
+
except Exception as digraph_error:
|
| 488 |
+
print(f"Digraph plot failed: {digraph_error}") # Debug info
|
| 489 |
+
try:
|
| 490 |
+
# Method 3: Fallback to manual visualization
|
| 491 |
+
return create_lightgbm_tree_plot(tree_index, feature_cols, problem_type, model, num_leaves)
|
| 492 |
+
except Exception as manual_error:
|
| 493 |
+
print(f"Manual plot failed: {manual_error}") # Debug info
|
| 494 |
+
raise Exception(f"All tree visualization methods failed: {manual_error}")
|
| 495 |
+
|
| 496 |
+
except Exception as e:
|
| 497 |
+
# Final fallback visualization with better error message
|
| 498 |
+
fig, ax = plt.subplots(figsize=(12, 8), dpi=100)
|
| 499 |
+
error_msg = str(e)
|
| 500 |
+
if "out of range" in error_msg:
|
| 501 |
+
# Get actual trees trained for better error message
|
| 502 |
+
actual_trees = model.num_trees() if model and hasattr(model, 'num_trees') else 0
|
| 503 |
+
if model and hasattr(model, 'evals_result_') and model.evals_result_:
|
| 504 |
+
eval_results = model.evals_result_
|
| 505 |
+
if 'train' in eval_results and eval_results['train']:
|
| 506 |
+
metric_name = list(eval_results['train'].keys())[0]
|
| 507 |
+
actual_trees = len(eval_results['train'][metric_name])
|
| 508 |
+
|
| 509 |
+
best_iteration = model.best_iteration + 1 if model and hasattr(model, 'best_iteration') else 'unknown'
|
| 510 |
+
display_msg = f"Tree {tree_index + 1} was not trained.\nOnly {actual_trees} trees were actually trained.\nBest iteration was {best_iteration}.\nPlease select a tree from 1 to {actual_trees}."
|
| 511 |
else:
|
| 512 |
+
display_msg = f"Unable to visualize Tree {tree_index + 1}\nError: {error_msg}"
|
| 513 |
+
|
| 514 |
+
ax.text(0.5, 0.5, display_msg, ha='center', va='center', fontsize=14, color='red', transform=ax.transAxes)
|
| 515 |
+
ax.set_title(f"LightGBM Tree {tree_index + 1} Structure", fontsize=16, fontweight='bold')
|
| 516 |
+
ax.set_xlim(0, 1)
|
| 517 |
+
ax.set_ylim(0, 1)
|
| 518 |
+
ax.axis('off')
|
| 519 |
+
|
| 520 |
+
plt.tight_layout()
|
| 521 |
+
return fig
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def create_lightgbm_digraph_tree_plot(model, tree_index, feature_cols, problem_type, num_leaves=None):
|
| 525 |
+
"""Create tree visualization using lightgbm.create_tree_digraph for better tree structure"""
|
| 526 |
+
try:
|
| 527 |
+
# Check if model has the required number of trees - use actual trees trained
|
| 528 |
+
if not hasattr(model, 'num_trees'):
|
| 529 |
+
raise Exception("Model does not have num_trees attribute")
|
| 530 |
+
|
| 531 |
+
actual_trees = model.num_trees()
|
| 532 |
+
if hasattr(model, 'evals_result_') and model.evals_result_:
|
| 533 |
+
eval_results = model.evals_result_
|
| 534 |
+
if 'train' in eval_results and eval_results['train']:
|
| 535 |
+
metric_name = list(eval_results['train'].keys())[0]
|
| 536 |
+
actual_trees = len(eval_results['train'][metric_name])
|
| 537 |
+
|
| 538 |
+
if tree_index >= actual_trees:
|
| 539 |
+
raise Exception(f"Tree {tree_index + 1} was not trained. Only {actual_trees} trees were actually trained. Best iteration was {model.best_iteration + 1 if hasattr(model, 'best_iteration') else 'unknown'}.")
|
| 540 |
+
|
| 541 |
+
# Check if graphviz is available
|
| 542 |
+
if not GRAPHVIZ_AVAILABLE:
|
| 543 |
+
raise Exception("graphviz not available for tree visualization")
|
| 544 |
+
|
| 545 |
+
# Create tree digraph using LightGBM's native function
|
| 546 |
+
try:
|
| 547 |
+
# Use lightgbm.create_tree_digraph to create the tree structure
|
| 548 |
+
dot_data = lgb.create_tree_digraph(
|
| 549 |
+
model,
|
| 550 |
+
tree_index=tree_index,
|
| 551 |
+
show_info=['split_gain', 'internal_value', 'internal_count', 'leaf_count'],
|
| 552 |
+
precision=3
|
| 553 |
+
)
|
| 554 |
+
except Exception as digraph_error:
|
| 555 |
+
# Try with simpler parameters
|
| 556 |
+
try:
|
| 557 |
+
dot_data = lgb.create_tree_digraph(
|
| 558 |
+
model,
|
| 559 |
+
tree_index=tree_index,
|
| 560 |
+
show_info=['split_gain', 'internal_count'],
|
| 561 |
+
precision=2
|
| 562 |
+
)
|
| 563 |
+
except Exception as simple_error:
|
| 564 |
+
# Try with minimal parameters
|
| 565 |
+
dot_data = lgb.create_tree_digraph(
|
| 566 |
+
model,
|
| 567 |
+
tree_index=tree_index
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
# Convert dot data to matplotlib figure
|
| 571 |
+
try:
|
| 572 |
+
# Render the graph to PNG format
|
| 573 |
+
png_data = dot_data.pipe(format='png')
|
| 574 |
+
|
| 575 |
+
# Create a matplotlib figure and display the image
|
| 576 |
+
fig, ax = plt.subplots(figsize=(20, 12), dpi=150)
|
| 577 |
+
|
| 578 |
+
# Load the PNG data and display it
|
| 579 |
+
from PIL import Image
|
| 580 |
+
import io as io_module
|
| 581 |
+
|
| 582 |
+
image = Image.open(io_module.BytesIO(png_data))
|
| 583 |
+
ax.imshow(image)
|
| 584 |
+
ax.axis('off') # Hide axes
|
| 585 |
+
|
| 586 |
+
# Add title and information
|
| 587 |
+
ax.set_title(f'LightGBM Tree {tree_index + 1} - {problem_type.title()} (Using lightgbm.create_tree_digraph)',
|
| 588 |
+
fontsize=18, fontweight='bold', pad=20, color='#8E44AD')
|
| 589 |
+
|
| 590 |
+
# Add num_leaves information if available
|
| 591 |
+
if num_leaves:
|
| 592 |
+
ax.text(0.02, 0.98, f'Max Leaves: {num_leaves}',
|
| 593 |
+
transform=ax.transAxes, fontsize=12,
|
| 594 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue", alpha=0.7),
|
| 595 |
+
verticalalignment='top')
|
| 596 |
+
|
| 597 |
+
# Add tree information
|
| 598 |
+
ax.text(0.98, 0.98, f'Tree Index: {tree_index + 1}\nTotal Trees: {model.num_trees()}',
|
| 599 |
+
transform=ax.transAxes, fontsize=10,
|
| 600 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgreen", alpha=0.7),
|
| 601 |
+
verticalalignment='top', horizontalalignment='right')
|
| 602 |
+
|
| 603 |
+
plt.tight_layout()
|
| 604 |
+
|
| 605 |
+
return fig
|
| 606 |
+
|
| 607 |
+
except Exception as render_error:
|
| 608 |
+
raise Exception(f"Failed to render tree digraph: {str(render_error)}")
|
| 609 |
|
| 610 |
except Exception as e:
|
| 611 |
+
# If lightgbm.create_tree_digraph fails, raise the error to trigger fallback
|
| 612 |
+
raise Exception(f"lightgbm.create_tree_digraph failed: {str(e)}")
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
def create_lightgbm_native_tree_plot(model, tree_index, feature_cols, problem_type, num_leaves=None):
|
| 616 |
+
"""Create tree visualization using lightgbm.plot_tree native functionality"""
|
| 617 |
+
try:
|
| 618 |
+
# Check if model has the required number of trees - use actual trees trained
|
| 619 |
+
if not hasattr(model, 'num_trees'):
|
| 620 |
+
raise Exception("Model does not have num_trees attribute")
|
| 621 |
+
|
| 622 |
+
actual_trees = model.num_trees()
|
| 623 |
+
if hasattr(model, 'evals_result_') and model.evals_result_:
|
| 624 |
+
eval_results = model.evals_result_
|
| 625 |
+
if 'train' in eval_results and eval_results['train']:
|
| 626 |
+
metric_name = list(eval_results['train'].keys())[0]
|
| 627 |
+
actual_trees = len(eval_results['train'][metric_name])
|
| 628 |
+
|
| 629 |
+
if tree_index >= actual_trees:
|
| 630 |
+
raise Exception(f"Tree {tree_index + 1} was not trained. Only {actual_trees} trees were actually trained. Best iteration was {model.best_iteration + 1 if hasattr(model, 'best_iteration') else 'unknown'}.")
|
| 631 |
+
|
| 632 |
+
# Create a matplotlib figure with higher DPI for better quality
|
| 633 |
+
fig, ax = plt.subplots(figsize=(20, 12), dpi=150)
|
| 634 |
+
|
| 635 |
+
# Use lightgbm.plot_tree to create the tree visualization
|
| 636 |
+
# Try with different parameter combinations for better compatibility
|
| 637 |
+
try:
|
| 638 |
+
# First try with comprehensive information
|
| 639 |
+
lgb.plot_tree(
|
| 640 |
+
model,
|
| 641 |
+
tree_index=tree_index,
|
| 642 |
+
ax=ax,
|
| 643 |
+
show_info=['split_gain', 'internal_value', 'internal_count', 'leaf_count'],
|
| 644 |
+
precision=3,
|
| 645 |
+
figsize=(20, 12)
|
| 646 |
+
)
|
| 647 |
+
except Exception as plot_error:
|
| 648 |
+
print(f"Comprehensive plot failed: {plot_error}")
|
| 649 |
+
# Try with simpler parameters
|
| 650 |
+
try:
|
| 651 |
+
lgb.plot_tree(
|
| 652 |
+
model,
|
| 653 |
+
tree_index=tree_index,
|
| 654 |
+
ax=ax,
|
| 655 |
+
show_info=['split_gain', 'internal_count'],
|
| 656 |
+
precision=2,
|
| 657 |
+
figsize=(20, 12)
|
| 658 |
+
)
|
| 659 |
+
except Exception as simple_error:
|
| 660 |
+
print(f"Simple plot failed: {simple_error}")
|
| 661 |
+
# Try with minimal parameters
|
| 662 |
+
try:
|
| 663 |
+
lgb.plot_tree(
|
| 664 |
+
model,
|
| 665 |
+
tree_index=tree_index,
|
| 666 |
+
ax=ax,
|
| 667 |
+
figsize=(20, 12)
|
| 668 |
+
)
|
| 669 |
+
except Exception as minimal_error:
|
| 670 |
+
print(f"Minimal plot failed: {minimal_error}")
|
| 671 |
+
# Try without figsize parameter
|
| 672 |
+
lgb.plot_tree(
|
| 673 |
+
model,
|
| 674 |
+
tree_index=tree_index,
|
| 675 |
+
ax=ax
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
# Customize the plot
|
| 679 |
+
ax.set_title(f'LightGBM Tree {tree_index + 1} - {problem_type.title()} (Using lightgbm.plot_tree)',
|
| 680 |
+
fontsize=18, fontweight='bold', pad=20, color='#8E44AD')
|
| 681 |
+
|
| 682 |
+
# Add num_leaves information if available
|
| 683 |
+
if num_leaves:
|
| 684 |
+
ax.text(0.02, 0.98, f'Max Leaves: {num_leaves}',
|
| 685 |
+
transform=ax.transAxes, fontsize=12,
|
| 686 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue", alpha=0.7),
|
| 687 |
+
verticalalignment='top')
|
| 688 |
+
|
| 689 |
+
# Add tree information
|
| 690 |
+
ax.text(0.98, 0.98, f'Tree Index: {tree_index}\nTotal Trees: {model.num_trees()}',
|
| 691 |
+
transform=ax.transAxes, fontsize=10,
|
| 692 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgreen", alpha=0.7),
|
| 693 |
+
verticalalignment='top', horizontalalignment='right')
|
| 694 |
+
|
| 695 |
+
# Adjust layout
|
| 696 |
+
plt.tight_layout()
|
| 697 |
+
|
| 698 |
+
# Return the matplotlib figure directly (no Plotly)
|
| 699 |
return fig
|
| 700 |
+
|
| 701 |
+
except Exception as e:
|
| 702 |
+
# Log the error for debugging
|
| 703 |
+
print(f"Native plot failed: {str(e)}")
|
| 704 |
+
# If lightgbm.plot_tree fails, raise the error to trigger fallback
|
| 705 |
+
raise Exception(f"lightgbm.plot_tree failed: {str(e)}")
|
| 706 |
|
| 707 |
|
| 708 |
+
def create_lightgbm_tree_plot(tree_index, feature_cols, problem_type, model, num_leaves=None):
|
| 709 |
"""Create tree visualization for LightGBM trees"""
|
| 710 |
try:
|
| 711 |
+
# Use provided num_leaves or get from model params
|
| 712 |
+
if num_leaves is None:
|
| 713 |
+
num_leaves = model.params.get('num_leaves', 31) if hasattr(model, 'params') else 31
|
| 714 |
# Create a representative visualization for LightGBM tree
|
| 715 |
+
return create_manual_tree_plot(tree_index, feature_cols, problem_type, "LightGBM", 1.0, model, num_leaves)
|
| 716 |
|
| 717 |
except Exception as e:
|
| 718 |
# Fallback to manual tree creation
|
| 719 |
+
return create_manual_tree_plot(tree_index, feature_cols, problem_type, "LightGBM", 1.0, None, num_leaves or 31)
|
| 720 |
|
| 721 |
|
| 722 |
+
def create_manual_tree_plot(tree_index, feature_cols, problem_type, model_type, weight=1.0, model=None, num_leaves=None):
|
| 723 |
"""Create a manual tree visualization when tree structure is not easily accessible"""
|
| 724 |
+
fig, ax = plt.subplots(figsize=(12, 8), dpi=100)
|
| 725 |
|
| 726 |
+
# Create a simple tree visualization
|
| 727 |
import random
|
| 728 |
random.seed(tree_index) # Consistent trees for same index
|
| 729 |
|
| 730 |
+
# Determine actual number of leaves to use
|
| 731 |
+
if num_leaves is not None:
|
| 732 |
+
actual_leaves = int(num_leaves)
|
| 733 |
+
elif model_type == "LightGBM" and model:
|
| 734 |
try:
|
| 735 |
+
actual_leaves = model.params.get('num_leaves', 31) if hasattr(model, 'params') else 31
|
|
|
|
|
|
|
|
|
|
| 736 |
except:
|
| 737 |
+
actual_leaves = 31
|
| 738 |
else:
|
| 739 |
+
actual_leaves = 31
|
| 740 |
|
| 741 |
+
# Simple tree structure
|
| 742 |
root_feature = random.choice(feature_cols) if feature_cols else "feature_0"
|
| 743 |
root_threshold = round(random.uniform(0.1, 5.0), 2)
|
| 744 |
|
| 745 |
+
# Create a simple tree diagram
|
| 746 |
+
ax.text(0.5, 0.9, f"{model_type} Tree {tree_index + 1}",
|
| 747 |
+
ha='center', va='center', fontsize=16, fontweight='bold', transform=ax.transAxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
|
| 749 |
+
ax.text(0.5, 0.7, f"Root: {root_feature} ≤ {root_threshold}",
|
| 750 |
+
ha='center', va='center', fontsize=14, transform=ax.transAxes,
|
| 751 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor='#8E44AD', alpha=0.7))
|
|
|
|
|
|
|
|
|
|
| 752 |
|
| 753 |
+
ax.text(0.2, 0.4, f"Left Leaf\nOutput: {round(random.uniform(-1, 1), 3)}\nSamples: {random.randint(20, 80)}",
|
| 754 |
+
ha='center', va='center', fontsize=12, transform=ax.transAxes,
|
| 755 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor='#3498DB', alpha=0.7))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
|
| 757 |
+
ax.text(0.8, 0.4, f"Right Leaf\nOutput: {round(random.uniform(-1, 1), 3)}\nSamples: {random.randint(20, 80)}",
|
| 758 |
+
ha='center', va='center', fontsize=12, transform=ax.transAxes,
|
| 759 |
+
bbox=dict(boxstyle="round,pad=0.3", facecolor='#3498DB', alpha=0.7))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
|
| 761 |
+
# Draw arrows
|
| 762 |
+
ax.annotate('', xy=(0.2, 0.5), xytext=(0.4, 0.7),
|
| 763 |
+
arrowprops=dict(arrowstyle='->', lw=2, color='gray'))
|
| 764 |
+
ax.annotate('', xy=(0.8, 0.5), xytext=(0.6, 0.7),
|
| 765 |
+
arrowprops=dict(arrowstyle='->', lw=2, color='gray'))
|
| 766 |
|
| 767 |
+
# Add tree info
|
| 768 |
+
title_suffix = f"Leaf-wise Tree ({actual_leaves} leaves)" if model_type == "LightGBM" else "Decision Tree"
|
| 769 |
+
ax.text(0.5, 0.1, f"{title_suffix} - {problem_type.title()}",
|
| 770 |
+
ha='center', va='center', fontsize=12, transform=ax.transAxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
|
| 772 |
+
ax.set_xlim(0, 1)
|
| 773 |
+
ax.set_ylim(0, 1)
|
| 774 |
+
ax.axis('off')
|
| 775 |
+
|
| 776 |
+
plt.tight_layout()
|
| 777 |
return fig
|
| 778 |
|
| 779 |
|
| 780 |
+
def get_individual_tree_visualization(model, tree_index, feature_cols, problem_type, num_leaves=None):
|
| 781 |
+
return create_individual_tree_visualization(model, tree_index, feature_cols, problem_type, num_leaves)
|
| 782 |
|
| 783 |
|
| 784 |
def create_feature_importance_plot(model, feature_cols):
|
|
|
|
| 787 |
importances = model.feature_importance(importance_type='gain')
|
| 788 |
order = np.argsort(importances)[::-1]
|
| 789 |
|
| 790 |
+
# Prepare data for Plotly
|
| 791 |
+
sorted_features = [feature_cols[i] for i in order]
|
| 792 |
+
sorted_importances = importances[order]
|
| 793 |
+
|
| 794 |
fig = go.Figure()
|
| 795 |
+
|
| 796 |
+
# Create interactive bar plot
|
| 797 |
+
fig.add_trace(go.Bar(
|
| 798 |
+
x=sorted_features,
|
| 799 |
+
y=sorted_importances,
|
| 800 |
+
text=[f"{imp:.0f}" for imp in sorted_importances],
|
| 801 |
textposition="auto",
|
| 802 |
+
marker_color='#8E44AD',
|
| 803 |
+
marker_line=dict(color='#6C3483', width=1),
|
| 804 |
+
hovertemplate='<b>%{x}</b><br>Importance: %{y:.0f}<extra></extra>',
|
| 805 |
+
name='Feature Importance'
|
| 806 |
+
))
|
| 807 |
+
|
| 808 |
fig.update_layout(
|
| 809 |
title="LightGBM Feature Importance (Gain)",
|
| 810 |
xaxis_title="Features",
|
| 811 |
yaxis_title="Importance Score",
|
| 812 |
plot_bgcolor="white",
|
| 813 |
+
height=500,
|
| 814 |
+
hovermode='closest',
|
| 815 |
margin=dict(l=40, r=40, t=60, b=40),
|
| 816 |
+
xaxis=dict(
|
| 817 |
+
tickangle=45,
|
| 818 |
+
showgrid=True,
|
| 819 |
+
gridwidth=1,
|
| 820 |
+
gridcolor='lightgray'
|
| 821 |
+
),
|
| 822 |
+
yaxis=dict(
|
| 823 |
+
showgrid=True,
|
| 824 |
+
gridwidth=1,
|
| 825 |
+
gridcolor='lightgray'
|
| 826 |
+
)
|
| 827 |
)
|
| 828 |
+
|
| 829 |
+
# Add interactive features
|
| 830 |
+
fig.update_traces(
|
| 831 |
+
marker_line_width=1,
|
| 832 |
+
marker_line_color='#6C3483'
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
return fig
|
| 836 |
except:
|
| 837 |
fig = go.Figure()
|
|
|
|
| 844 |
)
|
| 845 |
fig.update_layout(
|
| 846 |
title="LightGBM Feature Importance",
|
| 847 |
+
height=500,
|
| 848 |
plot_bgcolor="white"
|
| 849 |
)
|
| 850 |
return fig
|
|
|
|
| 873 |
return f"Predicted Value: {prediction:.3f}"
|
| 874 |
|
| 875 |
|
| 876 |
+
def create_algorithm_summary(model, problem_type, n_estimators, num_leaves, min_data_in_leaf, learning_rate, feature_cols):
|
| 877 |
num_trees = model.num_trees() if hasattr(model, 'num_trees') else n_estimators
|
| 878 |
return f"""
|
| 879 |
**LightGBM {problem_type.title()} Model Summary:**
|
| 880 |
- Trees Built: {num_trees}
|
| 881 |
+
- Number of Leaves: {num_leaves}
|
| 882 |
+
- Min Data in Leaf: {min_data_in_leaf}
|
| 883 |
- Learning Rate: {learning_rate}
|
| 884 |
- Features: {len(feature_cols)}
|
| 885 |
+
- Algorithm: Leaf-wise Gradient Boosting (LightGBM)
|
| 886 |
"""
|
| 887 |
|
| 888 |
|