sergiopaniego HF Staff commited on
Commit
38812af
Β·
1 Parent(s): 342e3fd

Started Alfred

Browse files
Files changed (3) hide show
  1. app.py +29 -0
  2. retriever.py +51 -0
  3. tools.py +56 -0
app.py CHANGED
@@ -1,4 +1,33 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  def greet(name):
4
  return "Hello " + name + "!!"
 
1
  import gradio as gr
2
+ import random
3
+ from smolagents import CodeAgent, HfApiModel
4
+
5
+ # Import our custom tools from their modules
6
+ from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
7
+ from retriever import load_guest_dataset
8
+
9
+ # Initialize the Hugging Face model
10
+ model = HfApiModel()
11
+
12
+ # Initialize the web search tool
13
+ search_tool = DuckDuckGoSearchTool()
14
+
15
+ # Initialize the weather tool
16
+ weather_info_tool = WeatherInfoTool()
17
+
18
+ # Initialize the Hub stats tool
19
+ hub_stats_tool = HubStatsTool()
20
+
21
+ # Load the guest dataset and initialize the guest info tool
22
+ guest_info_tool = load_guest_dataset()
23
+
24
+ # Create Alfred with all the tools
25
+ alfred = CodeAgent(
26
+ tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool],
27
+ model=model,
28
+ add_base_tools=True, # Add any additional base tools
29
+ planning_interval=3 # Enable planning every 3 steps
30
+ )
31
 
32
  def greet(name):
33
  return "Hello " + name + "!!"
retriever.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import Tool
2
+ from langchain_community.retrievers import BM25Retriever
3
+ from langchain.docstore.document import Document
4
+ import datasets
5
+
6
+
7
+ class GuestInfoRetrieverTool(Tool):
8
+ name = "guest_info_retriever"
9
+ description = "Retrieves detailed information about gala guests based on their name or relation."
10
+ inputs = {
11
+ "query": {
12
+ "type": "string",
13
+ "description": "The name or relation of the guest you want information about."
14
+ }
15
+ }
16
+ output_type = "string"
17
+
18
+ def __init__(self, docs):
19
+ self.retriever = BM25Retriever.from_documents(docs)
20
+
21
+ def forward(self, query: str):
22
+ results = self.retriever.get_relevant_documents(query)
23
+ if results:
24
+ return "\n\n".join([doc.page_content for doc in results[:3]])
25
+ else:
26
+ return "No matching guest information found."
27
+
28
+
29
+ def load_guest_dataset():
30
+ # Load the dataset
31
+ guest_dataset = datasets.load_dataset("sergiopaniego/unit3-invitees", split="train")
32
+
33
+ # Convert dataset entries into Document objects
34
+ docs = [
35
+ Document(
36
+ page_content="\n".join([
37
+ f"Name: {guest['name']}",
38
+ f"Relation: {guest['relation']}",
39
+ f"Description: {guest['description']}",
40
+ f"Email: {guest['email']}"
41
+ ]),
42
+ metadata={"name": guest["name"]}
43
+ )
44
+ for guest in guest_dataset
45
+ ]
46
+
47
+ # Return the tool
48
+ return GuestInfoRetrieverTool(docs)
49
+
50
+
51
+
tools.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import DuckDuckGoSearchTool
2
+ from smolagents import Tool
3
+ import random
4
+ from huggingface_hub import list_models
5
+
6
+
7
+ # Initialize the DuckDuckGo search tool
8
+ #search_tool = DuckDuckGoSearchTool()
9
+
10
+
11
+ class WeatherInfoTool(Tool):
12
+ name = "weather_info"
13
+ description = "Fetches dummy weather information for a given location."
14
+ inputs = {
15
+ "location": {
16
+ "type": "string",
17
+ "description": "The location to get weather information for."
18
+ }
19
+ }
20
+ output_type = "string"
21
+
22
+ def forward(self, location: str):
23
+ # Dummy weather data
24
+ weather_conditions = [
25
+ {"condition": "Rainy", "temp_c": 15},
26
+ {"condition": "Clear", "temp_c": 25},
27
+ {"condition": "Windy", "temp_c": 20}
28
+ ]
29
+ # Randomly select a weather condition
30
+ data = random.choice(weather_conditions)
31
+ return f"Weather in {location}: {data['condition']}, {data['temp_c']}Β°C"
32
+
33
+ class HubStatsTool(Tool):
34
+ name = "hub_stats"
35
+ description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
36
+ inputs = {
37
+ "author": {
38
+ "type": "string",
39
+ "description": "The username of the model author/organization to find models from."
40
+ }
41
+ }
42
+ output_type = "string"
43
+
44
+ def forward(self, author: str):
45
+ try:
46
+ # List models from the specified author, sorted by downloads
47
+ models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
48
+
49
+ if models:
50
+ model = models[0]
51
+ return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
52
+ else:
53
+ return f"No models found for author {author}."
54
+ except Exception as e:
55
+ return f"Error fetching models for {author}: {str(e)}"
56
+