Spaces:
Runtime error
Runtime error
[IMP] added improvement
Browse files- .gitignore +1 -0
- retriever.py +70 -8
.gitignore
CHANGED
@@ -51,6 +51,7 @@ Thumbs.db
|
|
51 |
# Gradio specific
|
52 |
gradio_cached_examples/
|
53 |
flagged/
|
|
|
54 |
|
55 |
# Environment variables
|
56 |
.env
|
|
|
51 |
# Gradio specific
|
52 |
gradio_cached_examples/
|
53 |
flagged/
|
54 |
+
.gradio/
|
55 |
|
56 |
# Environment variables
|
57 |
.env
|
retriever.py
CHANGED
@@ -1,12 +1,67 @@
|
|
1 |
from smolagents import Tool
|
2 |
-
from langchain_community.retrievers import BM25Retriever
|
3 |
from langchain.docstore.document import Document
|
|
|
|
|
4 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class GuestInfoRetrieverTool(Tool):
|
8 |
name = "guest_info_retriever"
|
9 |
-
description = "Retrieves detailed information about gala guests based on their name or relation."
|
10 |
inputs = {
|
11 |
"query": {
|
12 |
"type": "string",
|
@@ -15,10 +70,9 @@ class GuestInfoRetrieverTool(Tool):
|
|
15 |
}
|
16 |
output_type = "string"
|
17 |
|
18 |
-
def __init__(self, docs):
|
19 |
self.is_initialized = False
|
20 |
-
self.retriever =
|
21 |
-
|
22 |
|
23 |
def forward(self, query: str):
|
24 |
results = self.retriever.get_relevant_documents(query)
|
@@ -28,7 +82,15 @@ class GuestInfoRetrieverTool(Tool):
|
|
28 |
return "No matching guest information found."
|
29 |
|
30 |
|
31 |
-
def load_guest_dataset():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Load the dataset
|
33 |
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
34 |
|
@@ -46,8 +108,8 @@ def load_guest_dataset():
|
|
46 |
for guest in guest_dataset
|
47 |
]
|
48 |
|
49 |
-
# Return the tool
|
50 |
-
return GuestInfoRetrieverTool(docs)
|
51 |
|
52 |
|
53 |
|
|
|
1 |
from smolagents import Tool
|
|
|
2 |
from langchain.docstore.document import Document
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
import numpy as np
|
5 |
import datasets
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
|
9 |
+
class SentenceTransformerRetriever:
|
10 |
+
"""Retriever that uses SentenceTransformer embeddings for semantic search."""
|
11 |
+
|
12 |
+
def __init__(self, docs: List[Document], model_name: str = "all-MiniLM-L6-v2"):
|
13 |
+
"""Initialize with documents and a SentenceTransformer model.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
docs: List of Document objects
|
17 |
+
model_name: Name of the SentenceTransformer model to use
|
18 |
+
"""
|
19 |
+
self.docs = docs
|
20 |
+
self.model = SentenceTransformer(model_name)
|
21 |
+
|
22 |
+
# Create embeddings for all documents
|
23 |
+
self.doc_texts = [doc.page_content for doc in self.docs]
|
24 |
+
# Ensure we get numpy arrays for document embeddings
|
25 |
+
self.doc_embeddings = self.model.encode(self.doc_texts, convert_to_numpy=True)
|
26 |
+
|
27 |
+
def get_relevant_documents(self, query: str, k: int = 3) -> List[Document]:
|
28 |
+
"""Return documents relevant to the query.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
query: Query string
|
32 |
+
k: Number of documents to return
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
List of relevant Document objects
|
36 |
+
"""
|
37 |
+
# Encode the query and ensure we get a numpy array
|
38 |
+
query_embedding = self.model.encode(query, convert_to_numpy=True)
|
39 |
+
|
40 |
+
# Calculate similarities
|
41 |
+
# Calculate cosine similarity manually to avoid tensor conversion issues
|
42 |
+
similarities = []
|
43 |
+
for doc_embedding in self.doc_embeddings:
|
44 |
+
# Calculate cosine similarity between query and document
|
45 |
+
dot_product = np.dot(query_embedding, doc_embedding)
|
46 |
+
query_norm = np.linalg.norm(query_embedding)
|
47 |
+
doc_norm = np.linalg.norm(doc_embedding)
|
48 |
+
similarity = dot_product / (query_norm * doc_norm)
|
49 |
+
similarities.append(similarity)
|
50 |
+
|
51 |
+
# Convert to numpy array
|
52 |
+
similarities = np.array(similarities)
|
53 |
+
|
54 |
+
# Get the top k most similar documents
|
55 |
+
# Sort indices by similarity in descending order and take the top k
|
56 |
+
top_k_indices = np.argsort(-similarities)[:k]
|
57 |
+
|
58 |
+
# Return the top k documents
|
59 |
+
return [self.docs[i] for i in top_k_indices]
|
60 |
|
61 |
|
62 |
class GuestInfoRetrieverTool(Tool):
|
63 |
name = "guest_info_retriever"
|
64 |
+
description = "Retrieves detailed information about gala guests based on their name or relation using semantic search."
|
65 |
inputs = {
|
66 |
"query": {
|
67 |
"type": "string",
|
|
|
70 |
}
|
71 |
output_type = "string"
|
72 |
|
73 |
+
def __init__(self, docs, model_name: str = "all-MiniLM-L6-v2"):
|
74 |
self.is_initialized = False
|
75 |
+
self.retriever = SentenceTransformerRetriever(docs, model_name)
|
|
|
76 |
|
77 |
def forward(self, query: str):
|
78 |
results = self.retriever.get_relevant_documents(query)
|
|
|
82 |
return "No matching guest information found."
|
83 |
|
84 |
|
85 |
+
def load_guest_dataset(model_name: str = "all-MiniLM-L6-v2"):
|
86 |
+
"""Load the guest dataset and create a retriever tool.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
model_name: Name of the SentenceTransformer model to use
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
GuestInfoRetrieverTool: A tool for retrieving guest information
|
93 |
+
"""
|
94 |
# Load the dataset
|
95 |
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
96 |
|
|
|
108 |
for guest in guest_dataset
|
109 |
]
|
110 |
|
111 |
+
# Return the tool with the specified model
|
112 |
+
return GuestInfoRetrieverTool(docs, model_name=model_name)
|
113 |
|
114 |
|
115 |
|