Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
|
8 |
+
# Download and load model from Hugging Face
|
9 |
+
model_path = hf_hub_download(repo_id="Vaddiritz/Tourism-Package-Prediction-rithika", filename="best_tourism_model_v1.joblib")
|
10 |
+
model = joblib.load(model_path)
|
11 |
+
|
12 |
+
# Streamlit UI
|
13 |
+
st.title("Tourism Package Recommendation App")
|
14 |
+
st.write("""
|
15 |
+
This application predicts whether a customer is likely to purchase a **tourism package**
|
16 |
+
based on their profile and preferences.
|
17 |
+
Fill in the details below to get a prediction.
|
18 |
+
""")
|
19 |
+
|
20 |
+
# Customer Details
|
21 |
+
age = st.number_input("Age", min_value=18, max_value=100, value=30)
|
22 |
+
typeofcontact = st.selectbox("Type of Contact", ["Company Invited", "Self Inquiry"])
|
23 |
+
citytier = st.selectbox("City Tier", [1, 2, 3])
|
24 |
+
occupation = st.selectbox("Occupation", ["Salaried", "Freelancer"])
|
25 |
+
gender = st.selectbox("Gender", ["Male", "Female"])
|
26 |
+
numberofpersonvisiting = st.number_input("Number Of Person Visiting", min_value=1, max_value=10, value=1)
|
27 |
+
preferredpropertystar = st.selectbox("Preferred Property Star", [1, 2, 3, 4, 5])
|
28 |
+
maritalstatus = st.selectbox("Marital Status", ["Single", "Married", "Divorced"])
|
29 |
+
numberoftrips = st.number_input("Number Of Trips", min_value=0, max_value=20, value=1)
|
30 |
+
passport = st.selectbox("Passport", [0, 1])
|
31 |
+
owncar = st.selectbox("Own Car", [0, 1])
|
32 |
+
numberofchildrenvisiting = st.number_input("Number Of Children Visiting", min_value=0, max_value=10, value=0)
|
33 |
+
designation = st.selectbox("Designation", ["Manager", "Executive", "Senior Manager", "AVP"])
|
34 |
+
monthlyincome = st.number_input("Monthly Income", min_value=1000, value=50000)
|
35 |
+
pitchsatisfactionscore = st.slider("Pitch Satisfaction Score", 1, 5, 3)
|
36 |
+
productpitched = st.selectbox("Product Pitched", ["Basic", "Deluxe", "Super Deluxe", "King", "Standard"])
|
37 |
+
numberoffollowups = st.number_input("Number Of Followups", min_value=0, max_value=20, value=2)
|
38 |
+
durationofpitch = st.number_input("Duration Of Pitch (minutes)", min_value=0, max_value=60, value=10)
|
39 |
+
|
40 |
+
# --- Create input dataframe ---
|
41 |
+
input_data = pd.DataFrame([[age, typeofcontact, citytier, occupation, gender,numberofpersonvisiting, preferredpropertystar,
|
42 |
+
maritalstatus,numberoftrips, passport, owncar, numberofchildrenvisiting, designation,
|
43 |
+
monthlyincome, pitchsatisfactionscore, productpitched,numberoffollowups, durationofpitch]],
|
44 |
+
columns=["Age", "TypeofContact", "CityTier", "Occupation", "Gender",
|
45 |
+
"NumberOfPersonVisiting", "PreferredPropertyStar", "MaritalStatus",
|
46 |
+
"NumberOfTrips", "Passport", "OwnCar", "NumberOfChildrenVisiting",
|
47 |
+
"Designation", "MonthlyIncome", "PitchSatisfactionScore", "ProductPitched",
|
48 |
+
"NumberOfFollowups", "DurationOfPitch"])
|
49 |
+
|
50 |
+
|
51 |
+
# Display input summary
|
52 |
+
st.subheader("Entered Details:")
|
53 |
+
st.write(input_data)
|
54 |
+
|
55 |
+
if st.button("Predict Package Purchase"):
|
56 |
+
prediction = model.predict(input_data)[0]
|
57 |
+
result = "Likely to Purchase Package" if prediction == 1 else "Unlikely to Purchase"
|
58 |
+
st.subheader("Prediction Result:")
|
59 |
+
st.success(result)
|