import streamlit as st import pandas as pd import joblib from huggingface_hub import hf_hub_download from sklearn.preprocessing import LabelEncoder # Download and load model from Hugging Face model_path = hf_hub_download(repo_id="Vaddiritz/Tourism-Package-Prediction-rithika", filename="best_tourism_model_v1.joblib") model = joblib.load(model_path) # Streamlit UI st.title("Tourism Package Recommendation App") st.write(""" This application predicts whether a customer is likely to purchase a **tourism package** based on their profile and preferences. Fill in the details below to get a prediction. """) # Customer Details age = st.number_input("Age", min_value=18, max_value=100, value=30) typeofcontact = st.selectbox("Type of Contact", ["Company Invited", "Self Inquiry"]) citytier = st.selectbox("City Tier", [1, 2, 3]) occupation = st.selectbox("Occupation", ["Salaried", "Freelancer"]) gender = st.selectbox("Gender", ["Male", "Female"]) numberofpersonvisiting = st.number_input("Number Of Person Visiting", min_value=1, max_value=10, value=1) preferredpropertystar = st.selectbox("Preferred Property Star", [1, 2, 3, 4, 5]) maritalstatus = st.selectbox("Marital Status", ["Single", "Married", "Divorced"]) numberoftrips = st.number_input("Number Of Trips", min_value=0, max_value=20, value=1) passport = st.selectbox("Passport", [0, 1]) owncar = st.selectbox("Own Car", [0, 1]) numberofchildrenvisiting = st.number_input("Number Of Children Visiting", min_value=0, max_value=10, value=0) designation = st.selectbox("Designation", ["Manager", "Executive", "Senior Manager", "AVP"]) monthlyincome = st.number_input("Monthly Income", min_value=1000, value=50000) pitchsatisfactionscore = st.slider("Pitch Satisfaction Score", 1, 5, 3) productpitched = st.selectbox("Product Pitched", ["Basic", "Deluxe", "Super Deluxe", "King", "Standard"]) numberoffollowups = st.number_input("Number Of Followups", min_value=0, max_value=20, value=2) durationofpitch = st.number_input("Duration Of Pitch (minutes)", min_value=0, max_value=60, value=10) # --- Create input dataframe --- input_data = pd.DataFrame([[age, typeofcontact, citytier, occupation, gender,numberofpersonvisiting, preferredpropertystar, maritalstatus,numberoftrips, passport, owncar, numberofchildrenvisiting, designation, monthlyincome, pitchsatisfactionscore, productpitched,numberoffollowups, durationofpitch]], columns=["Age", "TypeofContact", "CityTier", "Occupation", "Gender", "NumberOfPersonVisiting", "PreferredPropertyStar", "MaritalStatus", "NumberOfTrips", "Passport", "OwnCar", "NumberOfChildrenVisiting", "Designation", "MonthlyIncome", "PitchSatisfactionScore", "ProductPitched", "NumberOfFollowups", "DurationOfPitch"]) # Display input summary st.subheader("Entered Details:") st.write(input_data) if st.button("Predict Package Purchase"): prediction = model.predict(input_data)[0] result = "Likely to Purchase Package" if prediction == 1 else "Unlikely to Purchase" st.subheader("Prediction Result:") st.success(result)