|
import gradio as gr |
|
import numpy as np |
|
import json |
|
import librosa |
|
import os |
|
import soundfile as sf |
|
import tempfile |
|
import uuid |
|
import transformers |
|
import torch |
|
import time |
|
import spaces |
|
|
|
from nemo.collections.asr.models import ASRModel |
|
|
|
from transformers import AutoModelForCausalLM |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
SAMPLE_RATE = 16000 |
|
MAX_AUDIO_SECONDS = 40 |
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style='text-align: center'>MyAlexa: Voice Chat Assistant</h1> |
|
<p style='text-align: center'>MyAlexa is a demo of a voice chat assistant with chat logs that accepts audio input and outputs an AI response. </p> |
|
<p>This space uses <a href="https://huggingface.co/nvidia/canary-1b"><b>NVIDIA Canary 1B</b></a> for Automatic Speech-to-text Recognition (ASR), <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama 3 8B Insruct</b></a> for the large language model (LLM) and <a href="https://huggingface.co/kakao-enterprise/vits-ljs"><b>VITS-ljs by Kakao Enterprise</b></a> for text to speech (TTS).</p> |
|
<p>This demo accepts audio inputs not more than 40 seconds long. Transcription and responses are limited to the English language.</p> |
|
<p>The LLM max_new_tokens, temperature and top_p are set to 512, 0.6 and 0.9 respectively</p> |
|
</div> |
|
''' |
|
PLACEHOLDER = """ |
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://i.ibb.co/S35q17Q/My-Alexa-Logo.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> |
|
<p style="font-size: 28px; margin-bottom: 2px; opacity: 0.65;">What's on your mind?</p> |
|
</div> |
|
""" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
canary_model = ASRModel.from_pretrained("nvidia/canary-1b").to(device) |
|
canary_model.eval() |
|
|
|
canary_model.change_decoding_strategy(None) |
|
decoding_cfg = canary_model.cfg.decoding |
|
decoding_cfg.beam.beam_size = 1 |
|
canary_model.change_decoding_strategy(decoding_cfg) |
|
|
|
|
|
|
|
llm_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") |
|
llama3_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") |
|
|
|
if llm_tokenizer.pad_token is None: |
|
llm_tokenizer.pad_token = llm_tokenizer.eos_token |
|
|
|
terminators = [ |
|
llm_tokenizer.eos_token_id, |
|
llm_tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
|
|
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=device) |
|
|
|
|
|
|
|
def convert_audio(audio_filepath, tmpdir, utt_id): |
|
""" |
|
Convert all files to monochannel 16 kHz wav files. |
|
Do not convert and raise error if audio is too long. |
|
Returns output filename and duration. |
|
""" |
|
|
|
data, sr = librosa.load(audio_filepath, sr=None, mono=True) |
|
|
|
duration = librosa.get_duration(y=data, sr=sr) |
|
|
|
if duration > MAX_AUDIO_SECONDS: |
|
raise gr.Error( |
|
f"This demo can transcribe up to {MAX_AUDIO_SECONDS} seconds of audio. " |
|
"If you wish, you may trim the audio using the Audio viewer in Step 1 " |
|
"(click on the scissors icon to start trimming audio)." |
|
) |
|
|
|
if sr != SAMPLE_RATE: |
|
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) |
|
|
|
out_filename = os.path.join(tmpdir, utt_id + '.wav') |
|
|
|
|
|
sf.write(out_filename, data, SAMPLE_RATE) |
|
|
|
return out_filename, duration |
|
|
|
def transcribe(audio_filepath): |
|
""" |
|
Transcribes a converted audio file using the asr model. |
|
Set to the english language with punctuations. |
|
Returns the transcribed text as a string. |
|
""" |
|
|
|
if audio_filepath is None: |
|
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone") |
|
|
|
utt_id = uuid.uuid4() |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id)) |
|
|
|
|
|
manifest_data = { |
|
"audio_filepath": converted_audio_filepath, |
|
"source_lang": "en", |
|
"target_lang": "en", |
|
"taskname": "asr", |
|
"pnc": "yes", |
|
"answer": "predict", |
|
"duration": str(duration), |
|
} |
|
|
|
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json') |
|
|
|
with open(manifest_filepath, 'w') as fout: |
|
line = json.dumps(manifest_data) |
|
fout.write(line + '\n') |
|
|
|
|
|
output_text = canary_model.transcribe(manifest_filepath)[0] |
|
|
|
return output_text |
|
|
|
def add_message(history, message): |
|
""" |
|
Adds the input message in the chatbot. |
|
Returns the updated chatbot. |
|
""" |
|
history.append((message, None)) |
|
return history |
|
|
|
def bot(history, message): |
|
""" |
|
Gets the bot's response and adds it in the chatbot. |
|
Returns the appended chatbot. |
|
""" |
|
response = bot_response(message, history) |
|
lines = response.split("\n") |
|
complete_lines = '\n'.join(lines[2:]) |
|
answer = "" |
|
for character in complete_lines: |
|
answer += character |
|
new_tuple = list(history[-1]) |
|
new_tuple[1] = answer |
|
history[-1] = tuple(new_tuple) |
|
time.sleep(0.01) |
|
yield history |
|
|
|
@spaces.GPU() |
|
def bot_response(message, history): |
|
""" |
|
Generates a streaming response using the llm model. |
|
Set max_new_tokens = 512, temperature=0.6, and top_p=0.9 |
|
Returns the generated response in string format. |
|
""" |
|
conversation = [] |
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = llm_tokenizer.apply_chat_template(conversation, return_tensors="pt").to(llama3_model.device) |
|
|
|
outputs = llama3_model.generate( |
|
input_ids, |
|
max_new_tokens = 512, |
|
eos_token_id = terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
pad_token_id=llm_tokenizer.pad_token_id, |
|
) |
|
|
|
out = outputs[0][input_ids.shape[-1]:] |
|
|
|
return llm_tokenizer.decode(out, skip_special_tokens=True) |
|
|
|
@spaces.GPU() |
|
def voice_player(history): |
|
""" |
|
Plays the generated response using the tts model. |
|
Returns the audio player with the generated response. |
|
""" |
|
_, text = history[-1] |
|
text = text.replace("*", "") |
|
voice = pipe(text) |
|
voice = gr.Audio(value = ( |
|
voice["sampling_rate"], |
|
voice["audio"].squeeze()), |
|
type="numpy", autoplay=True, |
|
label="MyAlexa Response", |
|
show_label=True, |
|
visible=True) |
|
return voice |
|
|
|
|
|
|
|
|
|
with gr.Blocks( |
|
title="MyAlexa", |
|
css=""" |
|
textarea { font-size: 18px;} |
|
""", |
|
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) |
|
) as demo: |
|
|
|
gr.HTML(DESCRIPTION) |
|
chatbot = gr.Chatbot( |
|
[], |
|
elem_id="chatbot", |
|
bubble_full_width=False, |
|
placeholder=PLACEHOLDER, |
|
label='MyAlexa' |
|
) |
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
gr.HTML( |
|
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>" |
|
) |
|
|
|
audio_file = gr.Audio( |
|
sources=["microphone", "upload"], |
|
type="filepath" |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.HTML("<p><b>Step 2:</b> Submit your recorded or uploaded audio as input and wait for MyAlexa's response.</p>") |
|
|
|
submit_button = gr.Button( |
|
value="Submit audio", |
|
variant="primary" |
|
) |
|
|
|
chat_input = gr.Textbox( |
|
label="Transcribed text:", |
|
interactive=False, |
|
placeholder="Transcribed text will appear here.", |
|
elem_id="chat_input", |
|
visible=False |
|
) |
|
|
|
gr.HTML("<p><b>[Optional]:</b> Replay MyAlexa's voice response.</p>") |
|
|
|
out_audio = gr.Audio( |
|
value = None, |
|
label="Response Audio Player", |
|
show_label=True, |
|
visible=False |
|
) |
|
|
|
chat_msg = chat_input.change(add_message, [chatbot, chat_input], [chatbot], api_name="add_message_in_chatbot") |
|
bot_msg = chat_msg.then(bot, [chatbot, chat_input], chatbot, api_name="bot_response_in_chatbot") |
|
voice_msg = bot_msg.then(voice_player, chatbot, out_audio, api_name="bot_response_voice_player") |
|
|
|
submit_button.click( |
|
fn=transcribe, |
|
inputs = [audio_file], |
|
outputs = [chat_input] |
|
) |
|
|
|
|
|
demo.queue() |
|
if __name__ == "__main__": |
|
demo.launch() |
|
|