Spaces:
Paused
Paused
Commented out Custom QDrant retriever
Browse files
app.py
CHANGED
|
@@ -61,23 +61,23 @@ hf_embeddings = HuggingFaceEndpointEmbeddings(
|
|
| 61 |
)
|
| 62 |
|
| 63 |
# Step 6: Create a custom retriever
|
| 64 |
-
class CustomQdrantRetriever:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
FAISS_VECTOR_STORE = "FAISS"
|
| 83 |
QDRANT_VECTOR_STORE = "QDRANT"
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
# Step 6: Create a custom retriever
|
| 64 |
+
# class CustomQdrantRetriever:
|
| 65 |
+
# def __init__(self, vectorstore, top_k=5):
|
| 66 |
+
# self.vectorstore = vectorstore
|
| 67 |
+
# self.top_k = top_k
|
| 68 |
|
| 69 |
+
# def __call__(self, query):
|
| 70 |
+
# embedded_query = self.vectorstore.embedding_function(query)
|
| 71 |
+
# search_result = vectorstore.search(
|
| 72 |
+
# # collection_name=collection_name,
|
| 73 |
+
# query_vector=embedded_query,
|
| 74 |
+
# limit=self.top_k
|
| 75 |
+
# )
|
| 76 |
+
# documents = [
|
| 77 |
+
# {"page_content": hit.payload["text"], "metadata": hit.payload}
|
| 78 |
+
# for hit in search_result
|
| 79 |
+
# ]
|
| 80 |
+
# return documents
|
| 81 |
|
| 82 |
FAISS_VECTOR_STORE = "FAISS"
|
| 83 |
QDRANT_VECTOR_STORE = "QDRANT"
|