Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel, PeftConfig | |
base_model = "mistralai/Mistral-7B-v0.1" | |
config = PeftConfig.from_pretrained("kiki7sun/mixtral-academic-finetune0119") | |
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.bfloat16) | |
ft_model = PeftModel.from_pretrained(model, "kiki7sun/mixtral-academic-finetune0119") | |
# ft_model = PeftModel.from_pretrained(model, 'kiki7sun/mixtral-academic-finetune-QLoRA-0121') | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model, | |
add_bos_token=True, | |
trust_remote_code=True, | |
) | |
ft_model.eval() | |
def greet(your_prompt): | |
model_input = tokenizer(your_prompt, return_tensors="pt").to("cpu") | |
with torch.no_grad(): | |
generation = ft_model.generate(**model_input, max_new_tokens = 150) | |
result = tokenizer.decode(generation[0], skip_special_tokens=True) | |
return result | |
demo = gr.Interface(fn=greet, | |
inputs="textbox", | |
outputs="textbox", | |
title="Academic Kitchen ChatChat", | |
) | |
if __name__ == "__main__": | |
demo.launch() |