import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch import base64 import textwrap from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma from langchain.llms.huggingface_pipeline import HuggingFacePipeline from langchain.chains import RetrievalQA @st.cache_resource def get_model(): device = torch.device('cpu') # device = torch.device('cuda:0') checkpoint = "LaMini-T5-738M" checkpoint = "MBZUAI/LaMini-T5-738M" tokenizer = AutoTokenizer.from_pretrained(checkpoint) base_model = AutoModelForSeq2SeqLM.from_pretrained( checkpoint, device_map=device, torch_dtype = torch.float32, # offload_folder= "/model_ck" ) return base_model,tokenizer @st.cache_resource def llm_pipeline(): base_model,tokenizer = get_model() pipe = pipeline( 'text2text-generation', model = base_model, tokenizer=tokenizer, max_length = 256, do_sample = True, temperature = 0.3, top_p = 0.95, # device=device ) local_llm = HuggingFacePipeline(pipeline = pipe) return local_llm @st.cache_resource def qa_llm(): llm = llm_pipeline() embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = Chroma(persist_directory="db", embedding_function = embeddings) retriever = db.as_retriever() qa = RetrievalQA.from_chain_type( llm=llm, chain_type = "stuff", retriever = retriever, return_source_documents=True ) return qa def process_answer(instruction): response='' instruction = instruction qa = qa_llm() generated_text = qa(instruction) answer = generated_text['result'] return answer, generated_text def main(): st.title("Search your pdf📚") with st.expander("About the App"): st.markdown( """This is a Generative AI powered Question and Answering app that responds to questions about your PDF file. """ ) question = st.text_area("Enter Your Question") if st.button("Search"): st.info("Your question: "+question) st.info("Your Answer") answer, metadata = process_answer(question) st.write(answer) st.write(metadata) if __name__ == "__main__": main()