Vishnu-add's picture
Update app.py
0f3e8c4 verified
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import streamlit as st
from datetime import date
import yfinance as yf
from plotly import graph_objs as go
START = "2019-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title("Cryptocurrency Price Forecaster")
html_temp = """
<marquee behavior="scroll" direction="left">ALL INVESTMENTS ARE SUBJECT TO PRICE FLUCTUATIONS AND OTHER MARKET RISKS..... </marquee>
"""
st.markdown(html_temp,unsafe_allow_html=True)
currency=("ETH-USD","BTC-USD","BNB-USD","MATIC-USD","TRX-USD","DOGE-USD","SOL-USD","ATOM-USD")
selected_currency=st.selectbox("select coin",currency)
n_days = st.slider("Days of prediction",1,30)
# period =n_years*365
# @st.cache
@st.cache_data()
def load_data(ticker):
data=yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
data_load_state=st.text("load data...")
data=load_data(selected_currency)
data_load_state.text("loading data....done")
# st.subheader('Raw data')
# st.write(data.head(7))
# st.write(data.tail(7))
def plot_raw_data():
fig=go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name='open'))
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name='close'))
fig.layout.update(title_text="Time Series Graph", xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
# plot_raw_data()
def get_data(ticker):
data=load_data(ticker)
data[str(n_days)+'_Day_Price_Forecast'] = data[['Close']].shift(-n_days)
X= np.array(data[['Close']])
X= X[:data.shape[0]-n_days]
y= np.array(data[str(n_days)+'_Day_Price_Forecast'])
y= y[:-n_days]
return X,y
X, y= get_data(selected_currency)
#linear regression
def result(X,y):
X_train, X_test, y_train,y_test = train_test_split(X,y,test_size=0.2)
linReg = LinearRegression()
linReg.fit(X_train,y_train)
x_projection = np.array(data[['Close']])[-n_days:]
linReg_prediction = linReg.predict(x_projection)
lr_acc = linReg.score(X_test,y_test)#r^2 test
return x_projection,linReg_prediction,lr_acc
n, m, p= result(X,y)
# st.write(n)
# st.subheader('Predicted prices ')
# st.write(m)
r_list=list(range(1,n_days))
def plot_result_data():
fig=go.Figure()
fig.add_trace(go.Scatter(x=r_list, y=m, name='predicted'))
fig.layout.update(title_text="Time Series Data", xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
# plot_result_data()
if st.button("View Past data"):
#st.subheader('Raw data')
st.write(data.head(7))
st.write(data.tail(7))
plot_raw_data()
if st.button("Predict future Prices"):
st.subheader('Predicted prices ')
st.write(m)
plot_result_data()
if st.button("Accuracy check"):
st.write(p*100)
if st.button('INR CONVERTER'):
st.write(m*82.56)
st.write(f'''
<a target="_blank" href="https://www.coinbase.com/learn/crypto-basics">
<button style = "background-color:#16767B; border-radius:7px;">
LEARN MORE
</button>
</a>
''',
unsafe_allow_html=True
)