Volko
commited on
Commit
·
d98144d
1
Parent(s):
c7b2ed6
Version 1.0
Browse files- app.py +138 -0
- pdf2vectorstore.py +72 -0
- requirements.txt +11 -0
- template.py +18 -0
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
from typing import Optional, Tuple
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from threading import Lock
|
| 6 |
+
|
| 7 |
+
from langchain.llms import OpenAI
|
| 8 |
+
from langchain.chains import ChatVectorDBChain
|
| 9 |
+
from template import QA_PROMPT, CONDENSE_QUESTION_PROMPT
|
| 10 |
+
from pdf2vectorstore import convert_to_vectorstore
|
| 11 |
+
|
| 12 |
+
def get_chain(api_key, vectorstore, model_name):
|
| 13 |
+
llm = OpenAI(model_name = model_name, temperature=0, openai_api_key=api_key)
|
| 14 |
+
qa_chain = ChatVectorDBChain.from_llm(
|
| 15 |
+
llm,
|
| 16 |
+
vectorstore,
|
| 17 |
+
qa_prompt=QA_PROMPT,
|
| 18 |
+
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
| 19 |
+
)
|
| 20 |
+
return qa_chain
|
| 21 |
+
|
| 22 |
+
def set_openai_api_key(api_key: str, vectorstore, model_name: str):
|
| 23 |
+
if api_key:
|
| 24 |
+
chain = get_chain(api_key, vectorstore, model_name)
|
| 25 |
+
return chain
|
| 26 |
+
|
| 27 |
+
class ChatWrapper:
|
| 28 |
+
|
| 29 |
+
def __init__(self):
|
| 30 |
+
self.lock = Lock()
|
| 31 |
+
self.previous_url = ""
|
| 32 |
+
self.vectorstore_state = None
|
| 33 |
+
self.chain = None
|
| 34 |
+
|
| 35 |
+
def __call__(
|
| 36 |
+
self,
|
| 37 |
+
api_key: str,
|
| 38 |
+
arxiv_url: str,
|
| 39 |
+
inp: str,
|
| 40 |
+
history: Optional[Tuple[str, str]],
|
| 41 |
+
model_name: str,
|
| 42 |
+
):
|
| 43 |
+
if not arxiv_url or not api_key:
|
| 44 |
+
history = history or []
|
| 45 |
+
history.append((inp, "Please provide both arXiv URL and API key to begin"))
|
| 46 |
+
return history, history
|
| 47 |
+
|
| 48 |
+
if arxiv_url != self.previous_url:
|
| 49 |
+
history = []
|
| 50 |
+
vectorstore = convert_to_vectorstore(arxiv_url, api_key)
|
| 51 |
+
self.previous_url = arxiv_url
|
| 52 |
+
self.chain = set_openai_api_key(api_key, vectorstore, model_name)
|
| 53 |
+
self.vectorstore_state = vectorstore
|
| 54 |
+
|
| 55 |
+
if self.chain is None:
|
| 56 |
+
self.chain = set_openai_api_key(api_key, self.vectorstore_state, model_name)
|
| 57 |
+
|
| 58 |
+
self.lock.acquire()
|
| 59 |
+
try:
|
| 60 |
+
history = history or []
|
| 61 |
+
if self.chain is None:
|
| 62 |
+
history.append((inp, "Please paste your OpenAI key to use"))
|
| 63 |
+
return history, history
|
| 64 |
+
import openai
|
| 65 |
+
openai.api_key = api_key
|
| 66 |
+
output = self.chain ({"question": inp, "chat_history": history})["answer"]
|
| 67 |
+
history.append((inp, output))
|
| 68 |
+
except Exception as e:
|
| 69 |
+
raise e
|
| 70 |
+
finally:
|
| 71 |
+
api_key = ""
|
| 72 |
+
self.lock.release()
|
| 73 |
+
return history, history
|
| 74 |
+
|
| 75 |
+
chat = ChatWrapper()
|
| 76 |
+
|
| 77 |
+
block = gr.Blocks(css=".gradio-container {background-color: #f8f8f8; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif}")
|
| 78 |
+
|
| 79 |
+
with block:
|
| 80 |
+
gr.HTML("<h1 style='text-align: center;'>ArxivGPT</h1>")
|
| 81 |
+
gr.HTML("<h3 style='text-align: center;'>Ask questions about research papers</h3>")
|
| 82 |
+
|
| 83 |
+
with gr.Row():
|
| 84 |
+
with gr.Column(width="auto"):
|
| 85 |
+
openai_api_key_textbox = gr.Textbox(
|
| 86 |
+
label="OpenAI API Key",
|
| 87 |
+
placeholder="Paste your OpenAI API key (sk-...)",
|
| 88 |
+
show_label=True,
|
| 89 |
+
lines=1,
|
| 90 |
+
type="password",
|
| 91 |
+
)
|
| 92 |
+
with gr.Column(width="auto"):
|
| 93 |
+
arxiv_url_textbox = gr.Textbox(
|
| 94 |
+
label="Arxiv URL",
|
| 95 |
+
placeholder="Enter the arXiv URL",
|
| 96 |
+
show_label=True,
|
| 97 |
+
lines=1,
|
| 98 |
+
)
|
| 99 |
+
with gr.Column(width="auto"):
|
| 100 |
+
model_dropdown = gr.Dropdown(
|
| 101 |
+
label="Choose a model (GPT-4 coming soon!)",
|
| 102 |
+
choices=["gpt-3.5-turbo"],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
chatbot = gr.Chatbot()
|
| 106 |
+
|
| 107 |
+
with gr.Row():
|
| 108 |
+
message = gr.Textbox(
|
| 109 |
+
label="What's your question?",
|
| 110 |
+
placeholder="Ask questions about the paper you just linked",
|
| 111 |
+
lines=1,
|
| 112 |
+
)
|
| 113 |
+
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
|
| 114 |
+
|
| 115 |
+
gr.Examples(
|
| 116 |
+
examples=[
|
| 117 |
+
"Please give me a brief summary about this paper",
|
| 118 |
+
"Are there any interesting correlations in the given paper?",
|
| 119 |
+
"How can this paper be applied in the real world?",
|
| 120 |
+
"What are the limitations of this paper?",
|
| 121 |
+
],
|
| 122 |
+
inputs=message,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
gr.HTML(
|
| 126 |
+
"<center style='margin-top: 20px;'>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
state = gr.State()
|
| 130 |
+
|
| 131 |
+
submit.click(chat,
|
| 132 |
+
inputs=[openai_api_key_textbox, arxiv_url_textbox, message, state, model_dropdown],
|
| 133 |
+
outputs=[chatbot, state])
|
| 134 |
+
message.submit(chat,
|
| 135 |
+
inputs=[openai_api_key_textbox, arxiv_url_textbox, message, state, model_dropdown],
|
| 136 |
+
outputs=[chatbot, state])
|
| 137 |
+
|
| 138 |
+
block.launch(share=True, debug=True, width=800)
|
pdf2vectorstore.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import requests
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
from pdf2image import convert_from_path
|
| 6 |
+
import pytesseract
|
| 7 |
+
import pickle
|
| 8 |
+
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
| 11 |
+
from langchain.vectorstores.faiss import FAISS
|
| 12 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 13 |
+
|
| 14 |
+
def download_pdf(url, filename):
|
| 15 |
+
print("Downloading pdf...")
|
| 16 |
+
response = requests.get(url, stream=True)
|
| 17 |
+
with open(filename, 'wb') as f:
|
| 18 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 19 |
+
f.write(chunk)
|
| 20 |
+
|
| 21 |
+
def extract_pdf_text(filename):
|
| 22 |
+
print("Extracting text from pdf...")
|
| 23 |
+
pytesseract.pytesseract.tesseract_cmd = 'tesseract'
|
| 24 |
+
images = convert_from_path(filename)
|
| 25 |
+
text = ""
|
| 26 |
+
for image in images:
|
| 27 |
+
text += pytesseract.image_to_string(image)
|
| 28 |
+
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
def get_arxiv_pdf_url(paper_link):
|
| 32 |
+
if paper_link.endswith('.pdf'):
|
| 33 |
+
return paper_link
|
| 34 |
+
else:
|
| 35 |
+
print("Getting pdf url...")
|
| 36 |
+
response = requests.get(paper_link)
|
| 37 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 38 |
+
pdf_url = soup.find('a', {'class': 'mobile-submission-download'})['href']
|
| 39 |
+
pdf_url = 'https://arxiv.org' + pdf_url
|
| 40 |
+
return pdf_url
|
| 41 |
+
|
| 42 |
+
def read_paper(paper_link):
|
| 43 |
+
print("Reading paper...")
|
| 44 |
+
pdf_filename = 'paper.pdf'
|
| 45 |
+
pdf_url = get_arxiv_pdf_url(paper_link)
|
| 46 |
+
download_pdf(pdf_url, pdf_filename)
|
| 47 |
+
text = extract_pdf_text(pdf_filename)
|
| 48 |
+
os.remove(pdf_filename)
|
| 49 |
+
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
def convert_to_vectorstore(arxiv_url, api_key):
|
| 53 |
+
if not arxiv_url or not api_key:
|
| 54 |
+
return None
|
| 55 |
+
print("Converting to vectorstore...")
|
| 56 |
+
txtfile = "paper.txt"
|
| 57 |
+
with open(txtfile, 'w') as f:
|
| 58 |
+
f.write(read_paper(arxiv_url))
|
| 59 |
+
|
| 60 |
+
loader = UnstructuredFileLoader(txtfile)
|
| 61 |
+
raw_documents = loader.load()
|
| 62 |
+
os.remove(txtfile)
|
| 63 |
+
print("Loaded document")
|
| 64 |
+
|
| 65 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
| 66 |
+
documents = text_splitter.split_documents(raw_documents)
|
| 67 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 68 |
+
embeddings = OpenAIEmbeddings()
|
| 69 |
+
os.environ["OPENAI_API_KEY"] = ""
|
| 70 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
| 71 |
+
|
| 72 |
+
return vectorstore
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests
|
| 2 |
+
beautifulsoup4
|
| 3 |
+
pdfminer.six
|
| 4 |
+
PyMuPDF
|
| 5 |
+
pdf2image
|
| 6 |
+
pytesseract
|
| 7 |
+
unstructured
|
| 8 |
+
gradio
|
| 9 |
+
faiss-cpu
|
| 10 |
+
langchain
|
| 11 |
+
tiktoken
|
template.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.prompts.prompt import PromptTemplate
|
| 2 |
+
|
| 3 |
+
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
| 4 |
+
Chat History:
|
| 5 |
+
{chat_history}
|
| 6 |
+
Follow Up Input: {question}
|
| 7 |
+
Standalone question:"""
|
| 8 |
+
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
| 9 |
+
|
| 10 |
+
template = """You are an AI assistant for answering questions about the contents of the research paper in Arxiv.
|
| 11 |
+
You are given the following extracted parts of a long document and a question. Provide a conversational answer.
|
| 12 |
+
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
| 13 |
+
Question: {question}
|
| 14 |
+
=========
|
| 15 |
+
{context}
|
| 16 |
+
=========
|
| 17 |
+
Answer in Markdown:"""
|
| 18 |
+
QA_PROMPT = PromptTemplate(template=template, input_variables=["question", "context"])
|