WAQASCHANNA commited on
Commit
3b1e4d9
·
verified ·
1 Parent(s): 2ab2993

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -99
app.py CHANGED
@@ -1,108 +1,84 @@
1
  import streamlit as st
2
  import pandas as pd
3
- import numpy as np
4
- from transformers import pipeline
5
- from geopy.geocoders import Nominatim
6
 
7
- # Load Models
8
- @st.cache_resource
9
- def load_llama_small_model():
10
- model_name = "meta-llama/Llama-2-7b"
11
- generator = pipeline("text-generation", model=model_name)
12
- return generator
13
 
14
- @st.cache_resource
15
- def load_llama_large_model():
16
- model_name = "meta-llama/Llama-3.1-405b"
17
- generator = pipeline("text-generation", model=model_name)
18
- return generator
 
 
 
 
19
 
20
- @st.cache_resource
21
- def load_multimodal_model():
22
- model_name = "google/vit-base-patch16-224"
23
- vision_model = pipeline("image-classification", model=model_name)
24
- return vision_model
 
 
 
 
 
 
 
 
 
25
 
26
- @st.cache_resource
27
- def load_text_classification_model():
28
- model_name = "distilbert-base-uncased"
29
- text_classifier = pipeline("text-classification", model=model_name)
30
- return text_classifier
 
 
 
 
 
 
 
 
31
 
32
- def main():
33
- st.title("AI-Powered Telecom Solution for Underserved Areas")
34
- st.write("This app is designed to leverage AI-powered models for optimizing telecommunication infrastructure in underserved areas.")
 
 
 
 
 
 
 
 
 
 
35
 
36
- st.sidebar.title("Options")
37
- option = st.sidebar.selectbox(
38
- "Select a Functionality",
39
- ("Network Planning Assistance", "Community Content Translation", "Operational Diagnostics", "Workflow Optimization")
40
- )
 
 
 
 
 
 
 
 
41
 
42
- if option == "Network Planning Assistance":
43
- st.header("Network Planning Assistance")
44
- address = st.text_input("Enter a location to analyze network suitability:")
45
- if st.button("Analyze Location"):
46
- if address:
47
- geolocator = Nominatim(user_agent="geoapiExercises")
48
- location = geolocator.geocode(address)
49
- if location:
50
- st.write(f"Location found: {location.address}")
51
- st.map(pd.DataFrame(np.array([[location.latitude, location.longitude]]), columns=['lat', 'lon']))
52
- st.write("Using Llama models to suggest optimal network deployment...")
53
- small_model = load_llama_small_model()
54
- large_model = load_llama_large_model()
55
- small_result = small_model(f"Provide initial suggestions for network deployment at {location.address}. Consider rural telecommunication needs.", max_length=100)
56
- large_result = large_model(f"Provide detailed suggestions for network deployment at {location.address}, considering infrastructure limitations and long-term scalability.", max_length=200)
57
- st.success("Initial Suggestions:")
58
- st.write(small_result[0]['generated_text'])
59
- st.success("Detailed Analysis:")
60
- st.write(large_result[0]['generated_text'])
61
- else:
62
- st.error("Location not found. Please try another address.")
63
- else:
64
- st.error("Please enter a location to proceed.")
65
-
66
- elif option == "Community Content Translation":
67
- st.header("Community Content Translation Assistance")
68
- text_to_translate = st.text_area("Enter content to translate for local communities:")
69
- if st.button("Translate Content"):
70
- if text_to_translate:
71
- small_model = load_llama_small_model()
72
- large_model = load_llama_large_model()
73
- translation_result = small_model(f"Translate the following content into a simple language suitable for rural communities: {text_to_translate}", max_length=100)
74
- classification_model = load_text_classification_model()
75
- content_type = classification_model(text_to_translate)
76
- st.success("Translated Content:")
77
- st.write(translation_result[0]['generated_text'])
78
- st.success("Content Type Classification:")
79
- st.write(content_type)
80
- else:
81
- st.error("Please enter content to proceed.")
82
-
83
- elif option == "Operational Diagnostics":
84
- st.header("Operational Maintenance & Network Troubleshooting")
85
- uploaded_file = st.file_uploader("Upload network diagnostic image (e.g., hardware photo):")
86
- if uploaded_file is not None:
87
- st.image(uploaded_file, caption='Uploaded Diagnostic Image', use_column_width=True)
88
- with st.spinner("Analyzing the image..."):
89
- vision_model = load_multimodal_model()
90
- result = vision_model(uploaded_file)
91
- st.success("Analysis Result:")
92
- st.write(result)
93
-
94
- elif option == "Workflow Optimization":
95
- st.header("Workflow Optimization for Telecom Operations")
96
- st.write("This feature helps optimize administrative and regulatory workflows using AI models.")
97
- task_description = st.text_area("Enter a workflow task that needs optimization:")
98
- if st.button("Optimize Workflow"):
99
- if task_description:
100
- large_model = load_llama_large_model()
101
- result = large_model(f"Optimize the following workflow for better efficiency: {task_description}", max_length=150)
102
- st.success("Optimized Workflow Suggestion:")
103
- st.write(result[0]['generated_text'])
104
- else:
105
- st.error("Please enter a workflow task to proceed.")
106
-
107
- if __name__ == "__main__":
108
- main()
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import matplotlib.pyplot as plt
 
 
4
 
5
+ # Title of the app
6
+ st.title("AI-Powered Solutions for the Telecommunication Industry in Underserved Areas")
 
 
 
 
7
 
8
+ # Sidebar for navigation
9
+ st.sidebar.title("Navigation")
10
+ options = st.sidebar.radio("Choose a solution:", [
11
+ "Network Optimization",
12
+ "Predictive Maintenance",
13
+ "Dynamic Spectrum Management",
14
+ "Energy Efficiency",
15
+ "Customer Support"
16
+ ])
17
 
18
+ # Network Optimization
19
+ if options == "Network Optimization":
20
+ st.header("AI-Driven Network Planning")
21
+ st.write("AI optimizes the placement of cell towers for maximum coverage in underserved areas.")
22
+
23
+ # Simulate tower placement on a map
24
+ st.subheader("Simulated Tower Placement")
25
+ data = {
26
+ "Latitude": [10.0, 10.5, 11.0, 11.5],
27
+ "Longitude": [76.0, 76.5, 77.0, 77.5],
28
+ "Coverage Radius (km)": [5, 7, 6, 8]
29
+ }
30
+ df = pd.DataFrame(data)
31
+ st.map(df)
32
 
33
+ # Predictive Maintenance
34
+ elif options == "Predictive Maintenance":
35
+ st.header("Predictive Maintenance with AI")
36
+ st.write("AI predicts equipment failures to reduce downtime and maintenance costs.")
37
+
38
+ # Simulate failure predictions
39
+ st.subheader("Equipment Failure Predictions")
40
+ equipment_data = {
41
+ "Equipment ID": [1, 2, 3, 4],
42
+ "Failure Probability (%)": [10, 25, 5, 50]
43
+ }
44
+ df = pd.DataFrame(equipment_data)
45
+ st.bar_chart(df.set_index("Equipment ID"))
46
 
47
+ # Dynamic Spectrum Management
48
+ elif options == "Dynamic Spectrum Management":
49
+ st.header("AI for Dynamic Spectrum Allocation")
50
+ st.write("AI dynamically allocates spectrum resources to reduce congestion and improve efficiency.")
51
+
52
+ # Simulate spectrum allocation
53
+ st.subheader("Spectrum Usage Over Time")
54
+ spectrum_data = {
55
+ "Time (hours)": [1, 2, 3, 4, 5],
56
+ "Spectrum Utilization (%)": [30, 50, 70, 60, 40]
57
+ }
58
+ df = pd.DataFrame(spectrum_data)
59
+ st.line_chart(df.set_index("Time (hours)"))
60
 
61
+ # Energy Efficiency
62
+ elif options == "Energy Efficiency":
63
+ st.header("AI for Energy Optimization")
64
+ st.write("AI optimizes energy consumption in telecom infrastructure using renewable energy sources.")
65
+
66
+ # Simulate energy usage
67
+ st.subheader("Energy Consumption Over Time")
68
+ energy_data = {
69
+ "Time (hours)": [1, 2, 3, 4, 5],
70
+ "Energy Consumption (kWh)": [100, 80, 90, 70, 60]
71
+ }
72
+ df = pd.DataFrame(energy_data)
73
+ st.area_chart(df.set_index("Time (hours)"))
74
 
75
+ # Customer Support
76
+ elif options == "Customer Support":
77
+ st.header("AI-Powered Customer Support")
78
+ st.write("AI chatbots provide 24/7 support for users in underserved areas.")
79
+
80
+ # Simulate a chatbot
81
+ st.subheader("Chatbot Demo")
82
+ user_input = st.text_input("Ask a question:")
83
+ if user_input:
84
+ st.write(f"AI Response: Thank you for your question! We will assist you shortly.")