WAQASCHANNA
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,84 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
from transformers import pipeline
|
5 |
-
from geopy.geocoders import Nominatim
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
def load_llama_small_model():
|
10 |
-
model_name = "meta-llama/Llama-2-7b"
|
11 |
-
generator = pipeline("text-generation", model=model_name)
|
12 |
-
return generator
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
st.write("Using Llama models to suggest optimal network deployment...")
|
53 |
-
small_model = load_llama_small_model()
|
54 |
-
large_model = load_llama_large_model()
|
55 |
-
small_result = small_model(f"Provide initial suggestions for network deployment at {location.address}. Consider rural telecommunication needs.", max_length=100)
|
56 |
-
large_result = large_model(f"Provide detailed suggestions for network deployment at {location.address}, considering infrastructure limitations and long-term scalability.", max_length=200)
|
57 |
-
st.success("Initial Suggestions:")
|
58 |
-
st.write(small_result[0]['generated_text'])
|
59 |
-
st.success("Detailed Analysis:")
|
60 |
-
st.write(large_result[0]['generated_text'])
|
61 |
-
else:
|
62 |
-
st.error("Location not found. Please try another address.")
|
63 |
-
else:
|
64 |
-
st.error("Please enter a location to proceed.")
|
65 |
-
|
66 |
-
elif option == "Community Content Translation":
|
67 |
-
st.header("Community Content Translation Assistance")
|
68 |
-
text_to_translate = st.text_area("Enter content to translate for local communities:")
|
69 |
-
if st.button("Translate Content"):
|
70 |
-
if text_to_translate:
|
71 |
-
small_model = load_llama_small_model()
|
72 |
-
large_model = load_llama_large_model()
|
73 |
-
translation_result = small_model(f"Translate the following content into a simple language suitable for rural communities: {text_to_translate}", max_length=100)
|
74 |
-
classification_model = load_text_classification_model()
|
75 |
-
content_type = classification_model(text_to_translate)
|
76 |
-
st.success("Translated Content:")
|
77 |
-
st.write(translation_result[0]['generated_text'])
|
78 |
-
st.success("Content Type Classification:")
|
79 |
-
st.write(content_type)
|
80 |
-
else:
|
81 |
-
st.error("Please enter content to proceed.")
|
82 |
-
|
83 |
-
elif option == "Operational Diagnostics":
|
84 |
-
st.header("Operational Maintenance & Network Troubleshooting")
|
85 |
-
uploaded_file = st.file_uploader("Upload network diagnostic image (e.g., hardware photo):")
|
86 |
-
if uploaded_file is not None:
|
87 |
-
st.image(uploaded_file, caption='Uploaded Diagnostic Image', use_column_width=True)
|
88 |
-
with st.spinner("Analyzing the image..."):
|
89 |
-
vision_model = load_multimodal_model()
|
90 |
-
result = vision_model(uploaded_file)
|
91 |
-
st.success("Analysis Result:")
|
92 |
-
st.write(result)
|
93 |
-
|
94 |
-
elif option == "Workflow Optimization":
|
95 |
-
st.header("Workflow Optimization for Telecom Operations")
|
96 |
-
st.write("This feature helps optimize administrative and regulatory workflows using AI models.")
|
97 |
-
task_description = st.text_area("Enter a workflow task that needs optimization:")
|
98 |
-
if st.button("Optimize Workflow"):
|
99 |
-
if task_description:
|
100 |
-
large_model = load_llama_large_model()
|
101 |
-
result = large_model(f"Optimize the following workflow for better efficiency: {task_description}", max_length=150)
|
102 |
-
st.success("Optimized Workflow Suggestion:")
|
103 |
-
st.write(result[0]['generated_text'])
|
104 |
-
else:
|
105 |
-
st.error("Please enter a workflow task to proceed.")
|
106 |
-
|
107 |
-
if __name__ == "__main__":
|
108 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
4 |
|
5 |
+
# Title of the app
|
6 |
+
st.title("AI-Powered Solutions for the Telecommunication Industry in Underserved Areas")
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Sidebar for navigation
|
9 |
+
st.sidebar.title("Navigation")
|
10 |
+
options = st.sidebar.radio("Choose a solution:", [
|
11 |
+
"Network Optimization",
|
12 |
+
"Predictive Maintenance",
|
13 |
+
"Dynamic Spectrum Management",
|
14 |
+
"Energy Efficiency",
|
15 |
+
"Customer Support"
|
16 |
+
])
|
17 |
|
18 |
+
# Network Optimization
|
19 |
+
if options == "Network Optimization":
|
20 |
+
st.header("AI-Driven Network Planning")
|
21 |
+
st.write("AI optimizes the placement of cell towers for maximum coverage in underserved areas.")
|
22 |
+
|
23 |
+
# Simulate tower placement on a map
|
24 |
+
st.subheader("Simulated Tower Placement")
|
25 |
+
data = {
|
26 |
+
"Latitude": [10.0, 10.5, 11.0, 11.5],
|
27 |
+
"Longitude": [76.0, 76.5, 77.0, 77.5],
|
28 |
+
"Coverage Radius (km)": [5, 7, 6, 8]
|
29 |
+
}
|
30 |
+
df = pd.DataFrame(data)
|
31 |
+
st.map(df)
|
32 |
|
33 |
+
# Predictive Maintenance
|
34 |
+
elif options == "Predictive Maintenance":
|
35 |
+
st.header("Predictive Maintenance with AI")
|
36 |
+
st.write("AI predicts equipment failures to reduce downtime and maintenance costs.")
|
37 |
+
|
38 |
+
# Simulate failure predictions
|
39 |
+
st.subheader("Equipment Failure Predictions")
|
40 |
+
equipment_data = {
|
41 |
+
"Equipment ID": [1, 2, 3, 4],
|
42 |
+
"Failure Probability (%)": [10, 25, 5, 50]
|
43 |
+
}
|
44 |
+
df = pd.DataFrame(equipment_data)
|
45 |
+
st.bar_chart(df.set_index("Equipment ID"))
|
46 |
|
47 |
+
# Dynamic Spectrum Management
|
48 |
+
elif options == "Dynamic Spectrum Management":
|
49 |
+
st.header("AI for Dynamic Spectrum Allocation")
|
50 |
+
st.write("AI dynamically allocates spectrum resources to reduce congestion and improve efficiency.")
|
51 |
+
|
52 |
+
# Simulate spectrum allocation
|
53 |
+
st.subheader("Spectrum Usage Over Time")
|
54 |
+
spectrum_data = {
|
55 |
+
"Time (hours)": [1, 2, 3, 4, 5],
|
56 |
+
"Spectrum Utilization (%)": [30, 50, 70, 60, 40]
|
57 |
+
}
|
58 |
+
df = pd.DataFrame(spectrum_data)
|
59 |
+
st.line_chart(df.set_index("Time (hours)"))
|
60 |
|
61 |
+
# Energy Efficiency
|
62 |
+
elif options == "Energy Efficiency":
|
63 |
+
st.header("AI for Energy Optimization")
|
64 |
+
st.write("AI optimizes energy consumption in telecom infrastructure using renewable energy sources.")
|
65 |
+
|
66 |
+
# Simulate energy usage
|
67 |
+
st.subheader("Energy Consumption Over Time")
|
68 |
+
energy_data = {
|
69 |
+
"Time (hours)": [1, 2, 3, 4, 5],
|
70 |
+
"Energy Consumption (kWh)": [100, 80, 90, 70, 60]
|
71 |
+
}
|
72 |
+
df = pd.DataFrame(energy_data)
|
73 |
+
st.area_chart(df.set_index("Time (hours)"))
|
74 |
|
75 |
+
# Customer Support
|
76 |
+
elif options == "Customer Support":
|
77 |
+
st.header("AI-Powered Customer Support")
|
78 |
+
st.write("AI chatbots provide 24/7 support for users in underserved areas.")
|
79 |
+
|
80 |
+
# Simulate a chatbot
|
81 |
+
st.subheader("Chatbot Demo")
|
82 |
+
user_input = st.text_input("Ask a question:")
|
83 |
+
if user_input:
|
84 |
+
st.write(f"AI Response: Thank you for your question! We will assist you shortly.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|