import os from dotenv import load_dotenv load_dotenv() DATA_PATH = "data" FAISS_INDEX_PATH = "faiss_index" EMBEDDING_MODEL = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1" DEVICE = "cuda" if os.environ.get("CUDA_AVAILABLE", "0") == "1" else "cpu" GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "") GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY", "") GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY", GOOGLE_API_KEY) ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY", "") # Default chat model identifiers GROQ_MODEL = os.environ.get("GROQ_MODEL", "meta-llama/llama-4-maverick-17b-128e-instruct") GEMINI_MODEL = os.environ.get("GEMINI_MODEL", "gemini-2.5-flash") ANTHROPIC_MODEL = os.environ.get("ANTHROPIC_MODEL", "claude-sonnet-4-20250514") # Cross-encoder model for reranking CROSS_ENCODER_MODEL = "cross-encoder/ms-marco-MiniLM-L-12-v2" # Remote FAISS index (Hugging Face dataset repo) # Override via env if needed HF_DATASET_REPO_ID = os.environ.get("HF_DATASET_REPO_ID", "Wasifjafri/research-paper-vdb") HF_DATASET_REPO_TYPE = os.environ.get("HF_DATASET_REPO_TYPE", "dataset") FAISS_INDEX_FILES = ( os.environ.get("FAISS_INDEX_FAISS_FILENAME", "index.faiss"), os.environ.get("FAISS_INDEX_META_FILENAME", "index.pkl"), )