DiffuSynthV0.2 / metrics /get_reference_AST_features.py
WeixuanYuan's picture
Upload 66 files
ae1bdf7 verified
raw
history blame
2.38 kB
import json
import librosa
import numpy as np
from tqdm import tqdm
from metrics.FD import ASTaudio2feature, calculate_statistics, save_AST_feature
from tools import rms_normalize
from transformers import AutoProcessor, ASTModel
device = "cpu"
processor = AutoProcessor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
AST = ASTModel.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(device)
data_split = "train"
with open(f'data/NSynth/{data_split}_examples.json') as f:
data = json.load(f)
def read_signal(note_str):
y, sr = librosa.load(f"data/NSynth/nsynth-{data_split}-52/audio/{note_str}.wav", sr=16000)
if len(y) >= 64000:
y = y[:64000]
else:
y_extend = [0.0] * 64000
y_extend[:len(y)] = y
y = y_extend
return rms_normalize(y)
for quality in ["bright", "dark", "distortion", "fast_decay", "long_release", "multiphonic", "nonlinear_env", "percussive", "reverb", "tempo-synced"]:
features = []
for i, (note_str, attributes) in tqdm(enumerate(data.items())):
if not attributes["pitch"] == 52:
continue
if not (quality in attributes['qualities_str']):
continue
signal = read_signal(note_str)
feature_for_one_signal = ASTaudio2feature(device, [signal], processor, AST, sampling_rate=16000)[0]
features.append(feature_for_one_signal)
mu, sigma = calculate_statistics(features)
print(np.shape(mu))
print(np.shape(sigma))
save_AST_feature(f'{data_split}_{quality}', mu.tolist(), sigma.tolist())
for instrument_name in ["bass", "brass", "flute", "guitar", "keyboard", "mallet", "organ", "reed", "string", "synth_lead", "vocal"]:
features = []
for i, (note_str, attributes) in tqdm(enumerate(data.items())):
if not attributes["pitch"] == 52:
continue
if not (attributes["instrument_family_str"] == instrument_name):
continue
signal = read_signal(note_str)
feature_for_one_signal = ASTaudio2feature(device, [signal], processor, AST, sampling_rate=16000)[0]
features.append(feature_for_one_signal)
mu, sigma = calculate_statistics(features)
print(np.shape(mu))
print(np.shape(sigma))
save_AST_feature(f'{data_split}_{instrument_name}', mu.tolist(), sigma.tolist())