Spaces:
Running
Running
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from model.DiffSynthSampler import DiffSynthSampler | |
from tools import pad_STFT, encode_stft | |
from tools import safe_int, adjust_audio_length | |
from webUI.natural_language_guided.utils import InputBatch2Encode_STFT, encodeBatch2GradioOutput_STFT, \ | |
latent_representation_to_Gradio_image | |
def get_sound2sound_with_text_module(gradioWebUI, sound2sound_with_text_state, virtual_instruments_state): | |
# Load configurations | |
uNet = gradioWebUI.uNet | |
freq_resolution, time_resolution = gradioWebUI.freq_resolution, gradioWebUI.time_resolution | |
VAE_scale = gradioWebUI.VAE_scale | |
height, width, channels = int(freq_resolution/VAE_scale), int(time_resolution/VAE_scale), gradioWebUI.channels | |
timesteps = gradioWebUI.timesteps | |
VAE_encoder = gradioWebUI.VAE_encoder | |
VAE_quantizer = gradioWebUI.VAE_quantizer | |
VAE_decoder = gradioWebUI.VAE_decoder | |
CLAP = gradioWebUI.CLAP | |
CLAP_tokenizer = gradioWebUI.CLAP_tokenizer | |
device = gradioWebUI.device | |
squared = gradioWebUI.squared | |
sample_rate = gradioWebUI.sample_rate | |
noise_strategy = gradioWebUI.noise_strategy | |
def receive_upload_origin_audio(sound2sound_duration, sound2sound_origin_source, | |
sound2sound_origin_upload, sound2sound_origin_microphone, | |
sound2sound_with_text_dict, virtual_instruments_dict): | |
if sound2sound_origin_source == "upload": | |
origin_sr, origin_audio = sound2sound_origin_upload | |
else: | |
origin_sr, origin_audio = sound2sound_origin_microphone | |
origin_audio = origin_audio / np.max(np.abs(origin_audio)) | |
width = int(time_resolution*((sound2sound_duration+1)/4) / VAE_scale) | |
audio_length = 256 * (VAE_scale * width - 1) | |
origin_audio = adjust_audio_length(origin_audio, audio_length, origin_sr, sample_rate) | |
D = librosa.stft(origin_audio, n_fft=1024, hop_length=256, win_length=1024) | |
padded_D = pad_STFT(D) | |
encoded_D = encode_stft(padded_D) | |
# Todo: justify batchsize to 1 | |
origin_spectrogram_batch_tensor = torch.from_numpy( | |
np.repeat(encoded_D[np.newaxis, :, :, :], 1, axis=0)).float().to(device) | |
# Todo: remove hard-coding | |
origin_flipped_log_spectrums, origin_flipped_phases, origin_signals, origin_latent_representations, quantized_origin_latent_representations = InputBatch2Encode_STFT( | |
VAE_encoder, origin_spectrogram_batch_tensor, resolution=(512, width * VAE_scale), quantizer=VAE_quantizer, squared=squared) | |
default_condition = CLAP.get_text_features(**CLAP_tokenizer([""], padding=True, return_tensors="pt"))[0].to("cpu").detach().numpy() | |
if sound2sound_origin_source == "upload": | |
sound2sound_with_text_dict["origin_upload_latent_representations"] = origin_latent_representations.tolist() | |
sound2sound_with_text_dict[ | |
"sound2sound_origin_upload_latent_representation_image"] = latent_representation_to_Gradio_image( | |
origin_latent_representations[0]).tolist() | |
sound2sound_with_text_dict[ | |
"sound2sound_origin_upload_quantized_latent_representation_image"] = latent_representation_to_Gradio_image( | |
quantized_origin_latent_representations[0]).tolist() | |
virtual_instruments = virtual_instruments_dict["virtual_instruments"] | |
virtual_instrument = {"condition": default_condition, | |
"negative_condition": default_condition, # care!!! | |
"CFG": 1, | |
"latent_representation": origin_latent_representations[0].to("cpu").detach().numpy(), | |
"quantized_latent_representation": quantized_origin_latent_representations[0].to("cpu").detach().numpy(), | |
"sampler": "ddim", | |
"signal": (sample_rate, origin_audio), | |
"spectrogram_gradio_image": origin_flipped_log_spectrums[0], | |
"phase_gradio_image": origin_flipped_phases[0]} | |
virtual_instruments["s2sup"] = virtual_instrument | |
virtual_instruments_dict["virtual_instruments"] = virtual_instruments | |
return {sound2sound_origin_spectrogram_upload_image: origin_flipped_log_spectrums[0], | |
sound2sound_origin_phase_upload_image: origin_flipped_phases[0], | |
sound2sound_origin_spectrogram_microphone_image: gr.update(), | |
sound2sound_origin_phase_microphone_image: gr.update(), | |
sound2sound_origin_upload_latent_representation_image: latent_representation_to_Gradio_image( | |
origin_latent_representations[0]), | |
sound2sound_origin_upload_quantized_latent_representation_image: latent_representation_to_Gradio_image( | |
quantized_origin_latent_representations[0]), | |
sound2sound_origin_microphone_latent_representation_image: gr.update(), | |
sound2sound_origin_microphone_quantized_latent_representation_image: gr.update(), | |
sound2sound_with_text_state: sound2sound_with_text_dict, | |
virtual_instruments_state: virtual_instruments_dict} | |
else: | |
sound2sound_with_text_dict["origin_microphone_latent_representations"] = origin_latent_representations.tolist() | |
sound2sound_with_text_dict[ | |
"sound2sound_origin_microphone_latent_representation_image"] = latent_representation_to_Gradio_image( | |
origin_latent_representations[0]).tolist() | |
sound2sound_with_text_dict[ | |
"sound2sound_origin_microphone_quantized_latent_representation_image"] = latent_representation_to_Gradio_image( | |
quantized_origin_latent_representations[0]).tolist() | |
virtual_instruments = virtual_instruments_dict["virtual_instruments"] | |
virtual_instrument = {"condition": default_condition, | |
"negative_condition": default_condition, # care!!! | |
"CFG": 1, | |
"latent_representation": origin_latent_representations[0], | |
"quantized_latent_representation": quantized_origin_latent_representations[0], | |
"sampler": "ddim", | |
"signal": origin_audio, | |
"spectrogram_gradio_image": origin_flipped_log_spectrums[0]} | |
virtual_instruments["s2sre"] = virtual_instrument | |
virtual_instruments_dict["virtual_instruments"] = virtual_instruments | |
return {sound2sound_origin_spectrogram_upload_image: gr.update(), | |
sound2sound_origin_phase_upload_image: gr.update(), | |
sound2sound_origin_spectrogram_microphone_image: origin_flipped_log_spectrums[0], | |
sound2sound_origin_phase_microphone_image: origin_flipped_phases[0], | |
sound2sound_origin_upload_latent_representation_image: gr.update(), | |
sound2sound_origin_upload_quantized_latent_representation_image: gr.update(), | |
sound2sound_origin_microphone_latent_representation_image: latent_representation_to_Gradio_image( | |
origin_latent_representations[0]), | |
sound2sound_origin_microphone_quantized_latent_representation_image: latent_representation_to_Gradio_image( | |
quantized_origin_latent_representations[0]), | |
sound2sound_with_text_state: sound2sound_with_text_dict, | |
virtual_instruments_state: virtual_instruments_dict} | |
def sound2sound_sample(sound2sound_prompts, sound2sound_negative_prompts, sound2sound_batchsize, | |
sound2sound_guidance_scale, sound2sound_sampler, | |
sound2sound_sample_steps, | |
sound2sound_origin_source, | |
sound2sound_noising_strength, sound2sound_seed, sound2sound_dict, virtual_instruments_dict): | |
# input processing | |
sound2sound_seed = safe_int(sound2sound_seed, 12345678) | |
sound2sound_batchsize = int(sound2sound_batchsize) | |
noising_strength = sound2sound_noising_strength | |
sound2sound_sample_steps = int(sound2sound_sample_steps) | |
CFG = int(sound2sound_guidance_scale) | |
if sound2sound_origin_source == "upload": | |
origin_latent_representations = torch.tensor( | |
sound2sound_dict["origin_upload_latent_representations"]).repeat(sound2sound_batchsize, 1, 1, 1).to( | |
device) | |
elif sound2sound_origin_source == "microphone": | |
origin_latent_representations = torch.tensor( | |
sound2sound_dict["origin_microphone_latent_representations"]).repeat(sound2sound_batchsize, 1, 1, 1).to( | |
device) | |
else: | |
print("Input source not in ['upload', 'microphone']!") | |
raise NotImplementedError() | |
# sound2sound | |
text2sound_embedding = \ | |
CLAP.get_text_features(**CLAP_tokenizer([sound2sound_prompts], padding=True, return_tensors="pt"))[0].to( | |
device) | |
mySampler = DiffSynthSampler(timesteps, height=height, channels=channels, noise_strategy=noise_strategy) | |
unconditional_condition = \ | |
CLAP.get_text_features(**CLAP_tokenizer([sound2sound_negative_prompts], padding=True, return_tensors="pt"))[ | |
0] | |
mySampler.activate_classifier_free_guidance(CFG, unconditional_condition.to(device)) | |
normalized_sample_steps = int(sound2sound_sample_steps / noising_strength) | |
mySampler.respace(list(np.linspace(0, timesteps - 1, normalized_sample_steps, dtype=np.int32))) | |
condition = text2sound_embedding.repeat(sound2sound_batchsize, 1) | |
# Todo: remove-hard coding | |
width = origin_latent_representations.shape[-1] | |
new_sound_latent_representations, initial_noise = \ | |
mySampler.img_guided_sample(model=uNet, shape=(sound2sound_batchsize, channels, height, width), | |
seed=sound2sound_seed, | |
noising_strength=noising_strength, | |
guide_img=origin_latent_representations, return_tensor=True, | |
condition=condition, | |
sampler=sound2sound_sampler) | |
new_sound_latent_representations = new_sound_latent_representations[-1] | |
# Quantize new sound latent representations | |
quantized_new_sound_latent_representations, loss, (_, _, _) = VAE_quantizer(new_sound_latent_representations) | |
new_sound_flipped_log_spectrums, new_sound_flipped_phases, new_sound_signals, _, _, _ = encodeBatch2GradioOutput_STFT(VAE_decoder, | |
quantized_new_sound_latent_representations, | |
resolution=( | |
512, | |
width * VAE_scale), | |
original_STFT_batch=None | |
) | |
new_sound_latent_representation_gradio_images = [] | |
new_sound_quantized_latent_representation_gradio_images = [] | |
new_sound_spectrogram_gradio_images = [] | |
new_sound_phase_gradio_images = [] | |
new_sound_rec_signals_gradio = [] | |
for i in range(sound2sound_batchsize): | |
new_sound_latent_representation_gradio_images.append( | |
latent_representation_to_Gradio_image(new_sound_latent_representations[i])) | |
new_sound_quantized_latent_representation_gradio_images.append( | |
latent_representation_to_Gradio_image(quantized_new_sound_latent_representations[i])) | |
new_sound_spectrogram_gradio_images.append(new_sound_flipped_log_spectrums[i]) | |
new_sound_phase_gradio_images.append(new_sound_flipped_phases[i]) | |
new_sound_rec_signals_gradio.append((sample_rate, new_sound_signals[i])) | |
sound2sound_dict[ | |
"new_sound_latent_representation_gradio_images"] = new_sound_latent_representation_gradio_images | |
sound2sound_dict[ | |
"new_sound_quantized_latent_representation_gradio_images"] = new_sound_quantized_latent_representation_gradio_images | |
sound2sound_dict["new_sound_spectrogram_gradio_images"] = new_sound_spectrogram_gradio_images | |
sound2sound_dict["new_sound_phase_gradio_images"] = new_sound_phase_gradio_images | |
sound2sound_dict["new_sound_rec_signals_gradio"] = new_sound_rec_signals_gradio | |
return {sound2sound_new_sound_latent_representation_image: latent_representation_to_Gradio_image( | |
new_sound_latent_representations[0]), | |
sound2sound_new_sound_quantized_latent_representation_image: latent_representation_to_Gradio_image( | |
quantized_new_sound_latent_representations[0]), | |
sound2sound_new_sound_spectrogram_image: new_sound_flipped_log_spectrums[0], | |
sound2sound_new_sound_phase_image: new_sound_flipped_phases[0], | |
sound2sound_new_sound_audio: (sample_rate, new_sound_signals[0]), | |
sound2sound_sample_index_slider: gr.update(minimum=0, maximum=sound2sound_batchsize - 1, value=0, | |
step=1.0, | |
visible=True, | |
label="Sample index", | |
info="Swipe to view other samples"), | |
sound2sound_seed_textbox: sound2sound_seed, | |
sound2sound_with_text_state: sound2sound_dict, | |
virtual_instruments_state: virtual_instruments_dict} | |
def show_sound2sound_sample(sound2sound_sample_index, sound2sound_with_text_dict): | |
sample_index = int(sound2sound_sample_index) | |
return {sound2sound_new_sound_latent_representation_image: | |
sound2sound_with_text_dict["new_sound_latent_representation_gradio_images"][sample_index], | |
sound2sound_new_sound_quantized_latent_representation_image: | |
sound2sound_with_text_dict["new_sound_quantized_latent_representation_gradio_images"][sample_index], | |
sound2sound_new_sound_spectrogram_image: sound2sound_with_text_dict["new_sound_spectrogram_gradio_images"][ | |
sample_index], | |
sound2sound_new_sound_phase_image: sound2sound_with_text_dict["new_sound_phase_gradio_images"][ | |
sample_index], | |
sound2sound_new_sound_audio: sound2sound_with_text_dict["new_sound_rec_signals_gradio"][sample_index]} | |
def sound2sound_switch_origin_source(sound2sound_origin_source): | |
if sound2sound_origin_source == "upload": | |
return {sound2sound_origin_upload_audio: gr.update(visible=True), | |
sound2sound_origin_microphone_audio: gr.update(visible=False), | |
sound2sound_origin_spectrogram_upload_image: gr.update(visible=True), | |
sound2sound_origin_phase_upload_image: gr.update(visible=True), | |
sound2sound_origin_spectrogram_microphone_image: gr.update(visible=False), | |
sound2sound_origin_phase_microphone_image: gr.update(visible=False), | |
sound2sound_origin_upload_latent_representation_image: gr.update(visible=True), | |
sound2sound_origin_upload_quantized_latent_representation_image: gr.update(visible=True), | |
sound2sound_origin_microphone_latent_representation_image: gr.update(visible=False), | |
sound2sound_origin_microphone_quantized_latent_representation_image: gr.update(visible=False)} | |
elif sound2sound_origin_source == "microphone": | |
return {sound2sound_origin_upload_audio: gr.update(visible=False), | |
sound2sound_origin_microphone_audio: gr.update(visible=True), | |
sound2sound_origin_spectrogram_upload_image: gr.update(visible=False), | |
sound2sound_origin_phase_upload_image: gr.update(visible=False), | |
sound2sound_origin_spectrogram_microphone_image: gr.update(visible=True), | |
sound2sound_origin_phase_microphone_image: gr.update(visible=True), | |
sound2sound_origin_upload_latent_representation_image: gr.update(visible=False), | |
sound2sound_origin_upload_quantized_latent_representation_image: gr.update(visible=False), | |
sound2sound_origin_microphone_latent_representation_image: gr.update(visible=True), | |
sound2sound_origin_microphone_quantized_latent_representation_image: gr.update(visible=True)} | |
else: | |
print("Input source not in ['upload', 'microphone']!") | |
with gr.Tab("Sound2Sound"): | |
gr.Markdown("Generate new sound based on a given sound!") | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=3): | |
sound2sound_prompts_textbox = gr.Textbox(label="Positive prompt", lines=2, value="organ") | |
text2sound_negative_prompts_textbox = gr.Textbox(label="Negative prompt", lines=2, value="") | |
with gr.Column(scale=1): | |
sound2sound_sample_button = gr.Button(variant="primary", value="Generate", scale=1) | |
sound2sound_sample_index_slider = gr.Slider(minimum=0, maximum=3, value=0, step=1.0, visible=False, | |
label="Sample index", | |
info="Swipe to view other samples") | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
with gr.Tab("Origin sound"): | |
sound2sound_duration_slider = gradioWebUI.get_duration_slider() | |
sound2sound_origin_source_radio = gr.Radio(choices=["upload", "microphone"], value="upload", | |
label="Input source") | |
sound2sound_origin_upload_audio = gr.Audio(type="numpy", label="Upload", source="upload", | |
interactive=True, visible=True) | |
sound2sound_origin_microphone_audio = gr.Audio(type="numpy", label="Record", source="microphone", | |
interactive=True, visible=False) | |
with gr.Row(variant="panel"): | |
sound2sound_origin_spectrogram_upload_image = gr.Image(label="Original upload spectrogram", | |
type="numpy", height=600, | |
visible=True) | |
sound2sound_origin_phase_upload_image = gr.Image(label="Original upload phase", | |
type="numpy", height=600, | |
visible=True) | |
sound2sound_origin_spectrogram_microphone_image = gr.Image(label="Original microphone spectrogram", | |
type="numpy", height=600, | |
visible=False) | |
sound2sound_origin_phase_microphone_image = gr.Image(label="Original microphone phase", | |
type="numpy", height=600, | |
visible=False) | |
with gr.Tab("Sound2sound settings"): | |
sound2sound_sample_steps_slider = gradioWebUI.get_sample_steps_slider() | |
sound2sound_sampler_radio = gradioWebUI.get_sampler_radio() | |
sound2sound_batchsize_slider = gradioWebUI.get_batchsize_slider() | |
sound2sound_noising_strength_slider = gradioWebUI.get_noising_strength_slider() | |
sound2sound_guidance_scale_slider = gradioWebUI.get_guidance_scale_slider() | |
sound2sound_seed_textbox = gradioWebUI.get_seed_textbox() | |
with gr.Column(scale=1): | |
sound2sound_new_sound_audio = gr.Audio(type="numpy", label="Play new sound", interactive=False) | |
with gr.Row(variant="panel"): | |
sound2sound_new_sound_spectrogram_image = gr.Image(label="New sound spectrogram", type="numpy", | |
height=600, scale=1) | |
sound2sound_new_sound_phase_image = gr.Image(label="New sound phase", type="numpy", | |
height=600, scale=1) | |
with gr.Row(variant="panel"): | |
sound2sound_origin_upload_latent_representation_image = gr.Image(label="Original latent representation", | |
type="numpy", height=800, | |
visible=True) | |
sound2sound_origin_upload_quantized_latent_representation_image = gr.Image( | |
label="Original quantized latent representation", type="numpy", height=800, visible=True) | |
sound2sound_origin_microphone_latent_representation_image = gr.Image(label="Original latent representation", | |
type="numpy", height=800, | |
visible=False) | |
sound2sound_origin_microphone_quantized_latent_representation_image = gr.Image( | |
label="Original quantized latent representation", type="numpy", height=800, visible=False) | |
sound2sound_new_sound_latent_representation_image = gr.Image(label="New latent representation", | |
type="numpy", height=800) | |
sound2sound_new_sound_quantized_latent_representation_image = gr.Image( | |
label="New sound quantized latent representation", type="numpy", height=800) | |
sound2sound_origin_upload_audio.change(receive_upload_origin_audio, | |
inputs=[sound2sound_duration_slider, sound2sound_origin_source_radio, | |
sound2sound_origin_upload_audio, | |
sound2sound_origin_microphone_audio, sound2sound_with_text_state, | |
virtual_instruments_state], | |
outputs=[sound2sound_origin_spectrogram_upload_image, | |
sound2sound_origin_phase_upload_image, | |
sound2sound_origin_spectrogram_microphone_image, | |
sound2sound_origin_phase_microphone_image, | |
sound2sound_origin_upload_latent_representation_image, | |
sound2sound_origin_upload_quantized_latent_representation_image, | |
sound2sound_origin_microphone_latent_representation_image, | |
sound2sound_origin_microphone_quantized_latent_representation_image, | |
sound2sound_with_text_state, | |
virtual_instruments_state]) | |
sound2sound_origin_microphone_audio.change(receive_upload_origin_audio, | |
inputs=[sound2sound_duration_slider, | |
sound2sound_origin_source_radio, sound2sound_origin_upload_audio, | |
sound2sound_origin_microphone_audio, sound2sound_with_text_state, | |
virtual_instruments_state], | |
outputs=[sound2sound_origin_spectrogram_upload_image, | |
sound2sound_origin_phase_upload_image, | |
sound2sound_origin_spectrogram_microphone_image, | |
sound2sound_origin_phase_microphone_image, | |
sound2sound_origin_upload_latent_representation_image, | |
sound2sound_origin_upload_quantized_latent_representation_image, | |
sound2sound_origin_microphone_latent_representation_image, | |
sound2sound_origin_microphone_quantized_latent_representation_image, | |
sound2sound_with_text_state, | |
virtual_instruments_state]) | |
sound2sound_sample_button.click(sound2sound_sample, | |
inputs=[sound2sound_prompts_textbox, | |
text2sound_negative_prompts_textbox, | |
sound2sound_batchsize_slider, | |
sound2sound_guidance_scale_slider, | |
sound2sound_sampler_radio, | |
sound2sound_sample_steps_slider, | |
sound2sound_origin_source_radio, | |
sound2sound_noising_strength_slider, | |
sound2sound_seed_textbox, | |
sound2sound_with_text_state, | |
virtual_instruments_state], | |
outputs=[sound2sound_new_sound_latent_representation_image, | |
sound2sound_new_sound_quantized_latent_representation_image, | |
sound2sound_new_sound_spectrogram_image, | |
sound2sound_new_sound_phase_image, | |
sound2sound_new_sound_audio, | |
sound2sound_sample_index_slider, | |
sound2sound_seed_textbox, | |
sound2sound_with_text_state, | |
virtual_instruments_state]) | |
sound2sound_sample_index_slider.change(show_sound2sound_sample, | |
inputs=[sound2sound_sample_index_slider, sound2sound_with_text_state], | |
outputs=[sound2sound_new_sound_latent_representation_image, | |
sound2sound_new_sound_quantized_latent_representation_image, | |
sound2sound_new_sound_spectrogram_image, | |
sound2sound_new_sound_phase_image, | |
sound2sound_new_sound_audio]) | |
sound2sound_origin_source_radio.change(sound2sound_switch_origin_source, | |
inputs=[sound2sound_origin_source_radio], | |
outputs=[sound2sound_origin_upload_audio, | |
sound2sound_origin_microphone_audio, | |
sound2sound_origin_spectrogram_upload_image, | |
sound2sound_origin_phase_upload_image, | |
sound2sound_origin_spectrogram_microphone_image, | |
sound2sound_origin_phase_microphone_image, | |
sound2sound_origin_upload_latent_representation_image, | |
sound2sound_origin_upload_quantized_latent_representation_image, | |
sound2sound_origin_microphone_latent_representation_image, | |
sound2sound_origin_microphone_quantized_latent_representation_image]) | |